- Аллотропные модификации олова
- Основные физические свойства олова
- Физические свойства олова
- Полиморфизм олова
- Особенности полиморфного перехода β→α
- Заключение
- Аллотропия химических элементов
- Что такое аллотропия химических элементов
- Аллотропия водорода
- Аллотропия кислорода
- Образование озона
- Физические химические свойства азона
- Применение
- Аллотропия серы
- Как образуется аллотропные модификации серы
- Аллотропия фосфора
- Красный фосфор
- Черный фосфор
- Аллотропия углерода
- Применение алмаза
- Графит
- Свойства графита
- Применение графита
- Карбин
- Аллотропия олова
- Образование аллотропии олова
- Похожие страницы:
Аллотропные модификации олова
Олово – с латинского — Stannum, это гибкий металл, с низкой температурой плавки. Он относится к самым древнейшим металлам. Олово находится в природе под видом минералов, таких как — касситерит и станин (речное олово и оловянный колчедан). Имеет большой недостаток, являясь непрочным металлом, поэтому гнётся под большим весом, но также хорош в составе разных сплавов.
Олово имеет интересные свойства, так как плавится при условии низкой температуры (231,9°С), но кипит при высокой (2270°С). Этот металл существует серого и белого вида, ему свойственны аллотропные модификации трёх типов. β-модификация это белое олово — самое распространенное, α-модификация – серое олово — более сложное соединение. Гамма-олово — новая модификация — γ, составляет структуру ромба, очень хрупкое и плотное, стойкое при 161 и 232 °С (для плавления чистого олова).
На практике, в основном, применяется белое олово (β-модификация), потому что оно устойчиво при температуре выше 13,2° С и ниже 161° С, но превращается в серое олово при более низких температурах (α-модификацию). При этом изделия разрушаются, становятся нестабильными, а дальнейшее замерзание приводить к рассыпанию метала и превращению его в порошок, что при контакте с исходным металлом передает форму порошка и ему. Из-за этого явления появилась известная фраза «оловянная чума».
Оловянная чума — полиморфное изменения. Так как, серое и белое олово металлы с необычными сложными решетками, переход сопровождается изменениям объемов и случается при низких температурах.
Источник
Основные физические свойства олова
Олово — металл, служивший человеку с незапамятных времен. Физические свойства олова обеспечили его основополагающую роль в истории человечества. Без него невозможно существование бронзы, остававшейся на протяжении многих веков единственным сплавом, из которого человек изготовлял практически все — от орудий труда до ювелирных украшений.
Физические свойства олова
При нормальном давлении и температуре 20°C олово идентифицируется как металл с блеском бело-серебристого цвета. Медленно тускнеет на воздухе вследствие образования оксидной пленки.
Для олова, как и для всех металлов, характерна непрозрачность. Свободные электроны металлической кристаллической решетки заполняют межатомное пространство и отражают световые лучи, не пропуская их. Поэтому находясь в кристаллическом состоянии, металл имеет характерный блеск, а в порошкообразном виде этот блеск утрачивает.
Обладает отличной ковкостью, т. е. легко подвергается обработке с помощью давления. Ковкость олову придает его высокая пластичность в сочетании с низким сопротивлением деформации. Пластичность металла позволяет раскатать его в тонкую фольгу, называемую станиолем или оловянной бумагой. Ее толщина колеблется от 0,008 до 0,12 мм. Ранее станиоль находил применение в качестве подложки при изготовлении зеркал и в электротехнике при производстве конденсаторов, пока не был полностью вытеснен алюминиевой фольгой.
У олова свойства достаточно мягкого металла. Его твердость по шкале Бринелля составляет 3,9–4,2 кгс/мм².
Относится к легкоплавким металлам. Температура плавления олова – 231,9°C – способствует быстрому извлечению его из руды. Олово просто сплавляется с другими металлами, что обеспечивает его обширное применение в промышленности.
Плотность при температуре 20°C составляет 7,29 г/см³. По этому показателю олово в 2,7 раза тяжелее алюминия, но легче серебра, золота, платины и приближено к плотности железа (7,87 г/см³).
Металл закипает при высокой температуре, равной 2620°C, долго оставаясь жидким в расплаве.
Химически чистое олово при обычной температуре обладает незначительной прочностью. При растяжении предел механической прочности составляет всего 1,7 кгс/мм², а относительное удлинение – 80–90%. Эти характеристики говорят о том, что деформировать оловянный прут можно без особых усилий в разных направлениях. При этом смещение слоев кристаллической решетки металла относительно друг друга сопровождается специфичным треском.
Полиморфизм олова
Полиморфизм (аллотропия) — физическое явление, основанное на перестроении атомов или молекул веществ в твердом состоянии, что влечет за собой изменение их свойств. Каждая полиморфная модификация устойчиво существует только в строго определенном интервале значений температур и давлений.
Любой металл обладает специфической кристаллической решеткой. При изменении внешних физических условий кристаллическая решетка может меняться. Полиморфизм металлов используют при их термической обработке в промышленности.
Химические свойства олова определяются его положением в периодической системе элементов Д. И. Менделеева и предусматривают амфотерность, т. е. способность проявлять как основные, так и кислотные свойства. Напрямую зависят от полиморфизма олова физические свойства.
Для металла известны три аллотропные модификации: альфа, бета и гамма. Полиморфная перестройка кристаллических решеток возможна вследствие изменения симметрии электронных оболочек атомов под воздействием разных температур.
- Для серого олова (α-Sn) характерна гранецентрированная кубическая кристаллическая решетка. Размер элементарной ячейки решетки здесь большой. Это напрямую отражается на плотности. Она меньше, чем у белого олова: 5,85 и 7,29 г/см³ соответственно. По электропроводности альфа-модификация относится к полупроводникам. По магнетизму — к диамагнетикам, т. к. под внешним магнитным воздействием намагничивается против направления внутреннего магнитного поля. Альфа-олово существует до температуры 13,2°C в виде мелкодисперсного порошка и практического значения не несет.
- Белое олово (β-Sn) является самой устойчивой аллотропной модификацией с объемноцентрированной тетрагональной кристаллической решеткой. Существует в диапазоне температурных значений от 13,2 до 161°С. Очень пластично, мягче золота, но тверже свинца. Среди остальных металлов обладает средним значением теплопроводности. Металл относят к проводникам, хотя электропроводность у бета-модификации относительно низкая. Этим свойством пользуются, чтобы уменьшить электропроводность какого-либо сплава путем добавления олова. Является парамагнетиком, т. е. во внешнем магнитном поле намагничивается в направлении внутреннего магнитного поля.
- Гамма-модификация (γ-Sn) обладает ромбической кристаллической решеткой, устойчива в диапазоне температур от 161 до 232°С. С увеличением температуры пластичность возрастает, но, достигнув температуры фазового перехода в 161°С, металл полностью утрачивает это свойство. Гамма-модификация имеет большую плотность при высокой степени хрупкости, т. е. сразу рассыпается в порошок, поэтому практического применения не имеет.
Особенности полиморфного перехода β→α
Процесс перехода из одной полиморфной модификации в другую происходит при изменении температуры. При этом наблюдают скачкообразные изменения физико-химических свойств металла.
Выше температуры 161°С бета-олово обратимо превращается в хрупкую гамма-модификацию. Ниже температуры 13°С бета-модификация необратимо переходит в порошкообразное серое олово. Данный полиморфный переход совершается с очень малой скоростью, но стоит только на бета-олово попасть крупинкам альфа-модификации, как плотный металл рассыпается в пыль. Поэтому полиморфный переход β→α иногда называют «оловянной чумой». Обратно альфа-модификация переводится в бета-модификацию только путем переплавки.
Фазовый переход β→α значительно ускоряется при минусовых температурах окружающей среды и сопровождается увеличением удельного объема металла примерно на 25%, что приводит к его рассыпанию в порошок.
В истории есть случаи, когда оловянные изделия на морозе становились серым порошком, обескураживая своих хозяев. «Оловянная чума» встречается редко и характерна лишь для химически чистого вещества. При наличии даже мельчайших примесей переход металла в порошок сильно замедляется.
Интересно предположение некоторых историков, что победу российскому императору Александру I над французской армией под командованием Наполеона Бонапарта помогла одержать «оловянная чума». При сильных морозах пуговицы на шинелях французов просто рассыпались в прах, и солдаты, замерзая, потеряли боеспособность.
Заключение
Олово обладает всеми типичными физическими свойствами металлов, а его полиморфизм по-своему удивителен. Без уникальной тягучести и пластичности этого металла невозможно представить себе современную промышленность. Почти половина от мировой добычи олова используется для производства пищевой жести. Оставшаяся половина расходуется для изготовления сплавов и различных соединений, применяемых во всех хозяйственных отраслях.
Источник
Аллотропия химических элементов
Аллотропия это когда атомы одного и того же химического элемента могут образовывать несколько простых веществ.
Это явление носит название аллотропии. (Термин «аллотропия» произошел от греческого словосочетания, означающего «другая форма».
Он был введен в химическую литературу Я. Берцелиусом в 1841 г.
Что такое аллотропия химических элементов
Первоначально этим термином определялось явление существования химического элемента или соединения в твердом состоянии в нескольких кристаллических формах (модификациях).
Я. Берцелиус ошибочно считал, что различные аллотропные формы элементов образуют в результате химических реакций различные вещества.).
Аллотропные формы отличаются составом своих молекул (кислород О2 и озон О3), строением кристаллов (графит и алмаз) или направлением вращения атомных ядер в молекулах (ортоводород и параводород).
Последний случай аллотропии характерен не только для водорода, но и для некоторых других двухатомных газов.
Однако молекула Н2 имеет очень маленькую массу и направление вращения ядер в ту или иную сторону заметно влияет на ее свойства.
Самопроизвольное превращение одной аллотропной формы в другую представляет собой переход от структуры с более высокой внутренней энергией к структуре с меньшей внутренней энергией.
При низких температурах устойчивыми являются те аллотропные формы, в которых частицы расположены ближе друг к другу и связаны между собой наибольшим числом химических связей.
С повышением температуры амплитуда колебательного движения частиц возрастает и более устойчивыми оказываются аллотропные формы с большими межатомными расстояниями.
Теоретически любое изменение внешних условий должно приводить к перестройке взаимного расположения частиц в молекулах или кристаллических решетках.
В действительности же мы наблюдаем на первый взгляд странную картину: при одинаковой температуре сосуществуют различные аллотропные формы одного и того же элемента.
Так, например, озон О3 и кислород О2 могут сосуществовать во всех трех агрегатных состояниях. Однако никакого противоречия здесь нет.
Просто мы не учли одно очень важное обстоятельство: чтобы произошел переход одной аллотропной формы в другую, необходимо первоначально затратить определенное количество энергии, которая называется энергией возбуждения или потенциальным барьером перехода.
И если атомы не обладают такой энергией, то аллотропного превращения не происходит.
Аллотропия водорода
Ядра атомов, подобно электронам, обладают спином. Поэтому молекула, состоящая из двух одинаковых атомов, может находиться в двух различных формах в зависимости от того, параллельны ядерные спины или антипараллельны.
Для молекул Н2 они получили название орто- и параводорода. Обычный водород при комнатной температуре содержит 25% параформы и 75% ортоформы.
Это соотношение не изменяется с повышением температуры, так как переход Н2 (лара) → Н2 (орто), сопровождающийся поглощением небольшого количества теплоты, запрещен законами квантовой механики.
Обратное превращение может протекать при низких температурах. Пропуская обычный водород сквозь слой охлажденного до 20К активированного угля, удается получить почти чистый параводород (99,7%).
Аллотропия кислорода
Простое вещество кислород при .обычных условиях может существовать в виде двух аллотропных модификаций — кислорода О2 и озона О3.
Кислород является наиболее распространенной формой этого элемента. Он составляет приблизительно одну пятую часть всего объема земной атмосферы.
Как показывают магнитные исследования, молекула О2 имеет два неспаренных электрона. В соответствии с этим ее строение можно выразить следующей структурной формулой:
Благодаря наличию нескольких ковалентных связей молекула кислорода очень устойчива; ее диссоциация на атомы становится заметной лишь при температуре выше 2000°С.
Поскольку масса молекулы О2 сравнительно невелика, кислород имеет низкие температуры плавления (-218,9°С) и кипения ( — 183°С). Его растворимость в воде при обычных условиях составляет примерно 3 мл в 100 мл.
Образование озона
Образование озона наблюдается во всех химических процессах, сопровождающихся выделением атомного кислорода, а также при действии на молекулярный кислород быстрых электронов и протонов, рентгеновских и ультрафиолетовых лучей.
Его возникновение можно изобразить в виде схемы:
В природе озон образуется при грозовых разрядах и в процессе окисления некоторых смол.
На высоте 10—30 км над поверхностью Земли имеется тонкий слой озона, обеспечивающий возможность биологической жизни на Земле.
Он задерживает идущее от Солнца жесткое ультрафиолетовое излучение и отражает инфракрасные лучи Земли, препятствуя ее охлаждению.
Молекула озона имеет угловую форму и небольшой дипольный момент:
Поскольку молекулы O3 обладают относительно большой массой и сложным строением, озон характеризуется более высокими температурами кипения и плавления, чем кислород.
Этим же объясняется интенсивная окраска жидкого и твердого озона и его хорошая растворимость в воде.
Физические химические свойства азона
Озон является неустойчивым соединением и при большой концентрации способен распадаться со взрывом. Он обладает гораздо более высокой окислительной способностью, чем молекулярный кислород.
Так, уже при обычных условиях озон окисляет серебро, ртуть и многие другие вещества:
Для качественного обнаружения озона обычно пользуются его реакцией с иодидом калия:
С молекулярным кислородом О2 эта реакция не идет. Существует и другой, более простой и оригинальный метод качественного определения озона, основанный на его способности быстро разрушать резину.
Если тонкую резиновую полоску натянуть в озонированном воздухе, она разрывается в течение нескольких секунд.
Применение
В последнее время озон находит все более широкое и разнообразное применение. Он используется для устранения неприятных запахов, обеззараживания питьевой воды и стерилизации перевязочных материалов.
Благодаря исключительно высокой окислительной способности озон применяется для получения органических кислот, быстрого старения вин и выдерживания табака.
Аллотропия серы
Элементная сера существует в виде нескольких аллотропных форм. При температуре ниже 95,6°С устойчивой является ромбическая сера, для которой характерна высокая растворимость в неполярных органических растворителях, например в сероуглероде CS2.
Плотность этой формы равна 2,07 г/см 3 . Кристаллы ромбической серы построены из восьми атомных молекул S8, имеющих форму короны (рис. 5).
Рис. 5. Строение кольцевых молекул S8
В интервале температур 95,6÷119,3°С (темп, пл.) устойчива моноклинная или призматическая сера. Ее плотность составляет 1,96 г/см 3 .
Кристаллы моноклинной и ромбической серы отличаются взаимной ориентацией мо лекул S8. Переход ромбической серы в моноклинную может занимать от нескольких минут до нескольких часов.
При быстром нагреве ромбическая сера не успевает полностью перейти в моноклинную и плавится при 112,8°C.
Есть еще две аллотропные модификации серы, нерастворимые в сероуглероде.
Это пластичная и пурпурная сера; первая получается при быстром охлаждении расплава серы, а вторая — при быстром охлаждении ее паров, нагретых до высокой температуры.
Рис. 6. Изменение вязкости жидкой серы в зависимости от температуры
Как образуется аллотропные модификации серы
Рассмотрим превращения, происходящие с серой при постепенном повышении температуры выше температуры ее плавления.
В интервале от t°пл до 155° C в расплаве присутствуют в основном молекулы S8. Эти сравнительно небольшие и почти сферические частицы легко смещаются друг относительно друга, благодаря чему вязкость жидкой серы при этих температурах сравнительно невелика (рис. 6).
Начиная со 155—159°C происходит процесс полимеризации — кольца (S8) разрываются и соединяются в длинные цепи:
Образующиеся цепочки скручиваются, переплетаются и утрачивают способность свободно перемещаться с повышением температуры концентрация полимерных цепочек возрастает, а их средняя длина увеличивается.
Расплав серы становится все более вязким, а его цвет изменяется от оранжево-желтого до темно-коричневого. При 187— 195°с вязкость серы достигает наибольшего значения.
Ее не удается даже вылить из сосуда. Максимальная длина цепочек соответствует молекулярной массе 3•10 7 у. е., что составляет около миллиона атомов серы.
С увеличением температуры выше 200°C полимерные цепочки начинают постепенно уменьшаться и вязкость серы понижается.
Если такой расплав вылить в холодную воду, образуется пластичная сера. Она имеет аморфную структуру и не растворяется в CS2.
Пластичная сера очень быстро превращается в ромбическую модификацию.
При обычном давлении сера кипит при 444°C; образующиеся пары содержат циклические молекулы S8. с увеличением температуры появляются частицы с меньшей массой: S6, S 4, S2.
Изменение состава молекул вызывает постепенное обесцвечивание паров серы. Выше 900°C в парах присутствуют только двухатомные молекулы S2.
Они представляют собой электронные аналоги молекул O 2 и содержат два неспаренных электрона:
Выше 1500°C молекулы S 2 начинают диссоциировать на отдельные атомы
Аллотропия фосфора
Атомы фосфора могут образовывать двухатомные, четырех атомные и полимерные молекулы. Двухатомные молекулы аналогичны по своему электронному строению молекулам азота:
Они существуют при температурах выше 1000°C. В жидком состоянии, в растворе, а также в парах ниже 1000°C устойчивы четырехатомные молекулы Р4, имеющие форму тетраэдра (рис. 10).
Каждый атом фосфора в такой молекуле связан ковалентными связями с тремя другими атомами и имеет неподеленную пару электронов.
Рис. 10 . Строение молекул Р4
Конденсируясь, пары фосфора образуют белый фосфор — воскообразное бесцветное вещество, раствори мое в сероуглероде, бензоле, диэтиловом эфире и некоторых других органических жидкостях; его плотность 1,828 г/см 3 , темп. пл. 44,1 °С, темп. кип. 280,5 °С.
Белый фосфор имеет молекулярную кристаллическую решетку, в узлах которой расположены тетраэдрические молекулы Р4. Поскольку связи Р—Р в молекулах Р4 довольно легко рвутся, белый фосфор является исключительно реакционноспособным веществом.
При температуре, близкой к 40°С, он самопроизвольно воспламеняется на воздухе, образуя густой белый «дым» оксида Р2О5:
Медленное окисление белого фосфора (например, под водой) сопровождается характерным свечением — фосфоресценцией.
Желтоватая окраска, появляющаяся при его длительном хранении, объясняется постепенным превращением белого фосфора в красный.
Этот переход ускоряется под действием рентгеновских и ультрафиолетовых лучей, а также в присутствии катализатора — молекулярного иода I2.
Рис. 11 . Структура черного фосфора
Красный фосфор
Красный фосфор получают из белого, нагревая последний до 275—340°С без доступа воздуха. Он гораздо устойчивее, чем белый фосфор: не растворяется ни в одном из известных растворителей и не воспламеняется при нагревании на воздухе до 240°С.
В зависимости от условий получаются различные формы красного фосфора. Его цвет может меняться от темно-коричневого до красного или фиолетового; плотность изменяется в интервале 2,0—2,4 г/см 3 , а температура плавления — от 585 до 600°С.
Красный фосфор построен из длинных цепей, в которых каждый атом связан с тремя другими соседними атомами:
На концах макромолекул находятся атомы кислорода галогенов или группы ОН.
При 500—600°С полимер начинает медленно разлагаться и испаряться, причем образующиеся пары содержат тетраэдрические молекулы Р4.
Черный фосфор
Наиболее устойчивой модификацией является черный фосфор, получающийся из белого при 200°С и 12•10 8 н/м 2
Его можно обрабатывать на воздухе, не опасаясь воспламенения; он загорается лишь выше 400°С. По внешнему виду черный фосфор напоминает графит, но является полупроводником.
Его кристаллы построены из волнистых слоев (рис. 11). При нагревании до 550°С он самопроизвольно превращается в красный, а с повышением давления переходит в металлическое состояние.
Аллотропия углерода
Существуют три аллотропных модификации углерода: алмаз, графит и карбин. Другие хорошо известные формы углерода — сажа, кокс, древесный и каменный уголь — представляют собой аморфные образования с графитоподобной структурой.
Алмаз — это бесцветное полимерное тело, превосходящее по твердости все известные вещества. Каждый атом углерода образует четыре одинаковые ковалентные связи, направленные из центра правильного тетраэдра к его вершинам.
В такой трехмерной структуре нельзя выделить какие-либо отдельные группы атомов; все атомы совершенно равноценны.
Поскольку на образование химических связей затрачиваются все наружные электроны атомов углерода, кристалл алмаза является изолятором.
Алмазы встречаются чаще всего в виде октаэдров с округленными плоскостями (рис. 13). Благодаря высокой светопреломляющей способности они переливаются всеми цветами радуги.
Окрашенные за счет посторонних примесей голубые и розовые алмазы в природе очень редки. Зато черные непрозрачные кристаллы (карбонадо), обладающие повышенной твердостью, составляют около половины всех добываемых алмазов.
Рис. 18. Кристаллическая решетка идеального графита
Рис. 14. Структура графита
Алмазы находят самое различное применение. Наиболее крупные и красивые кристаллы дополнительно шлифуют и под названием «бриллианты» используют для изготовления дорогих украшений.
Масса бриллиантов выражается в каратах; один карат равен 0,2 г. Самый крупный из когда-либо найденных алмазов, до того как он был распилен на более мелкие куски, весил 2024 карата.
Крупные бриллианты очень часто оставляли за собой в истории кровавый след самых различных преступлений.
Драгоценные камни выкрадывали из сокровищниц и, чтобы обмануть охрану и назойливых сыщиков, глотали бриллианты, прятали их в складки одежды, зашивали в мышцы своего тела и, наконец, часто теряли. Так, например, бесследно исчез один из крупнейших алмазов «Великий могол» (280 карат).
Применение алмаза
Небольшие по размерам алмазы (алмазные осколки), окрашенные в темный цвет, применяются для изготовления стеклорежущего инструмента, алмазных буров, используемых при про хождении твердых горных пород, специальных пил и рубанков, фильер для вытягивания тонкой проволоки диаметром 15 ,02—0,08 мм.
Алмазный порошок — хороший материал для полировки бриллиантов, гравирова ния на металлах и стекле. В 1954 г. ученые научились получать искусств енные алмазы.
Переход графита в алмаз происходит при высоком давлении и повышенной температуре. Менее чем за три года этим способом удалось получить свыше 100 тыс. каратов промышленных кристаллов.
Графит
Графит имеет слоистую структуру, причем каждый слои представляет собой как бы гигантскую сетчатую макромолекулу (рис. 14). В плоскости любого слоя атомы углерода окружены тремя ближайшими соседями; угол между связями равен 120°.
Четвертые электроны атомов углерода делокализованы в пределах всей макромолекулы. Этим объ ясняется электропроводность, металлический блеск и темный цвет графита.
Отдельные слои связаны между собой слабыми силами Ван-дер-Ваальса, поэтому графит очень мягок, он легко расслаивается на отдельные чешуйки и его применяют в качестве смазывающего вещества.
Электропроводность графита, измеренная вдоль слоев и в перпендикулярном направлении, отличается более чем в 100 раз.
Рис. 15. Строение графида калия состава С8К
Свойства графита
Важным свойством графита является его способность образовывать слоистые соединения при воздействии паров элементов и соединений. При этом кристалл графита сохраняет свою форму, но сильно набухает, расширяясь в направлении, перпендикулярном слоям.
При нагревании графита с расплавами цезия, рубидия или калия образуются графитиды, в которых атомы щелочных металлов занимают пространство между отдельными слоями (рис. 15).
Подобные соединения представляют собой очень реакционноспособные вещества медно-красного цвета. Они самовоспламеняются на воздухе, а с водой реагируют со взрывом.
Графит, из которого удалены примеси газообразных веществ, может поглощать фтор с образованием вещества состава CFх (где х≤1). Расстояние между слоями увеличивается при этом до 0,82 нм, а электропроводность и характерный блеск графита постепенно исчезают.
При окислении графита азотной кислотой получается бензолгексакарбоновая кислота С6(СООН) 6. Если ее нагреть с известью, то образуется бензол. Это доказывает, что структура отдельных ячеек слоя графита близка к структуре молекул бензола.
Под действием сильных окислителей, например смеси HNO3 + H2SO4 в присутствии хлората калия КСlO3, графит переходит в «графитовую кислоту».
В процессе реакции между слоями внедряются атомы кислорода; графит набухает, а его цвет изменяется от зеленого до коричневого. На концах отдельных слоев появляются карбоксильные группы —СООН.
Применение графита
Благодаря высокой термоустойчивости (температура возгонки графита равна 3650°С), электро- и теплопроводности и коррозионной стойкости графит находит очень широкое практическое применение.
Из него изготовляют огнеупорные тигли, высокотемпературные смазки, электроды и футеровку печей. Смеси графита с различными наполнителями используют для изготовления карандашей и красок.
Огромное количество высокочистого графита идет на устройство атомных реакторов, в которых он выполняет роль замедлителя нейтронов.
Карбин
Синтезированное советскими учеными В. В. Коршаком и А. М. Сладковым новое аллотропное видоизмене ние углерода — карбин представляет собой черный порошок, состоящий из прямолинейных цепочек Сn с тройными связями:
Высокая степень делокализации электронов обусловливает черную окраску полимера и его полупроводниковые свойства.
При нагревании до 2300°С карбин переходит в графит — наиболее устойчивую аллотропную форму углерода.
Аллотропия олова
Олово может существовать в виде двух аллотропных форм, одна из которых (серое олово) обладает свойствами полупроводника, а другая (белое олово) представляет собой металл с высокой электропроводностью.
При 13°С эти две формы находятся в равновесии:
При более низких температурах устойчивым является серое олово, имеющее структуру алмаза. Однако высокотемпературная форма переходит с заметной скоростью в низкотемпературную только при очень низкой температуре (около —30°С).
Так как на практике используют только высокотемпературную модификацию — белое олово, малая скорость превращения Snб →Snc представляет собой положительное явление.
Образование аллотропии олова
На морозе оловянные предметы покрываются серыми пятнами, затем превращаются в порошок. Разрушение кристаллической структуры связано с изменением плотности при переходе белого олова (7,3 г/см 3 ) в серое (5,8 г/см 3 ).
Остановить начавшийся на холоду процесс разрушения белого олова невозможно, поэтому он получил название «оловянная чума».
История с оловянными пуговицами, которые растрескались от жестоких морозов на шинелях наполеоновских солдат во время их отступления из Москвы, является одним из примеров такого аллотропного перехода.
Аналогичный случай произошел в 1912 г. во время полярной экспедиции Скотта. Припой на баках с топливом, которое везли с собой участники этой экспедиции, содержал очень много олова и при низкой температуре быстро разрушился.
Горючее вытекло и залило запасы пищи, что послужило причиной трагической гибели экспедиции.
Статья на тему Аллотропия химических элементов
Похожие страницы:
Понравилась статья поделись ей
Источник