Что вреднее олово или свинец

Что вреднее олово или свинец?

Многие годы, свинец и олово используют в промышленности, не редко оба эти металла встречаются в одном соединении. Такие сплавы применяют для самых разнообразных целей, которые иногда контактируют с человеком, оказывая на него различное влияние. В результате этого, возникает совершено обоснованный вопрос, вредны ли эти элементы или что вреднее олово или свинец?

Само олово в чистом виде, без примесей, является низко токсичным элементом. Случаи отравления оловом очень редки, потому что маленькое количество олова, попавшее в организм, не способно вызвать острого отравления. Та же ситуация и с рядом сплавов на основе олова, они не наносят вред здоровью человека.

В доказательство можно привести пример использования олова в пищевой промышленности: данным металлом покрывают внутреннюю поверхность жестяной банки, которую используют для консервов. Но, стоит помнить, что есть и такие сплавы, которые могут нанести существенный вред здоровью. Например: оловянистый водород и тетрахлорид олова, при попадании паров, данных соединений в дыхательные пути, начинается их раздражение и кашель, который впоследствии может вызвать осложнения.

Свинец, наоборот, считают высокотоксичным металлом. Он способен вызывать ряд заболеваний и накапливаться в организме, тем самым образуя хронические болезни. Отравиться свинцом можно надышавшись выхлопными газами или при попадании в желудок, путем попадания с пищей или водой. При отравлении, кожа человека бледнеет, болит желудок, наблюдается анемия. При накоплении свинца в организме, он оказывает сильнейшее влияние на функцию почек. Возможно так же, агрессивное поведение и снижение умственных способностей.

Оба элемента присутствуют в огромном количестве сплавов, из которых производят различные вещи, которые активно используются человеком в повседневной жизни. Поэтому, следует предельно внимательно относиться к таким вещам и при выевлении симптомов, описанных выше, незамедлительно обращайтесь к врачу.

Источник

Нестойкий оловянный припой. О чуме, погубившей Роберта Скотта, и о других заразных болезнях

«Моей вдове»

Дорогая, любимая. Мне непросто писать из-за холода — 70 градусов ниже ноля и только палатка защищает… Мы оказались в тупике, и я не уверен, что мы справимся. Во время короткого завтрака я пользуюсь небольшой толикой тепла, чтобы написать письма, готовясь к возможной кончине. Если с мной что-то случится, я бы хотел, чтобы ты знала, как много ты значила для меня. Заинтересуй сына естественными науками, если сможешь. О, моя дорогая, моя дорогая, как я мечтал о его будущем. И все же, моя девочка, я знаю, что ты справишься. Ваши портреты найдут у меня на груди. Я мог бы многое рассказать тебе об этом путешествии. Какие истории ты смогла бы поведать нашему мальчику, но, ох, какой ценой. Лишиться возможности увидеть твое милое, милое лицо. Я думаю, что шансов нет. Мы решили не убивать себя, и бороться до конца, чтобы добраться до лагеря. Смерть в борьбе безболезненна, так что не волнуйся за меня.

Это знаменитое письмо написал в Антарктиде замерзающий Роберт Скотт в конце марта 1912 года. 17 января 1912 года, в ходе второй антарктической экспедиции под названием «Терра Нова», Скотту и горстке его соратников (Эдгару Эвансу, Лоуренсу Отсу, Эдварду Уилсону и Генри Боуэрсу) удалось достичь Южного Полюса, где они обнаружили норвежский флаг и множество собачьих следов (14 декабря 1911 года к полюсу пришла группа Руаля Амундсена, в которой кроме Амундсена были Оскар Вистинг, Хелмер Хансен, Сверре Хассель, Олаф Бьяланд).

Соперничество Амундсена и Скотта, фамилии которых теперь навечно сцеплены дефисом в названии американской антарктической станции «Амундсен-Скотт» прямо на Южном Полюсе — это редкостной выразительности пример, демонстрирующий сокрушительную победу эффективного менеджера над прекраснодушным героем. Амундсен (которого завистники звали «Рекламундсен») продумал свою экспедицию до таких мелочей как закупка варежек. Его палатки не продувались, так как были оснащены ультрасовременными застежками-молниями (которые, кстати, на антарктическом морозе иногда так замерзали, что из палатки было невозможно выбраться без ножа, либо молнию приходилось отогревать снаружи). Расходуя груз и провиант, Амундсен методично расстреливал ездовых собак, оставляя ровно столько, сколько нужно было, чтобы тащить полегчавшие сани, скармливая убитых собак живым. Он называл ледники в честь своих спонсоров и за всю экспедицию не потерял ни одного человека.

Скотт при движении на юг также оставлял «базовые лагеря» с топливом и провиантом для обратного пути. Были там и запасы керосина в канистрах, запаянных оловом. На свою беду полярники не учли феномена оловянной чумы.

Аллотропия

Для химических элементов характерны так называемые «аллотропные изменения» (модификации). В зависимости от условий окружающей среды физические свойства элемента, а также его наблюдаемое состояние, могут сильно меняться. Это связано с переупорядочиванием атомов и, следовательно, с изменением силы связей между ними.

Рассмотрим три характерных примера аллотропной модификации:

Озон и кислород

Обе этих молекулы состоят из атомов кислорода, но плотность озона в 1,5 раза больше, чем у кислорода, и химическая активность также выше. Например, возможна прямая реакция озона с серебром, которая между кислородом и серебром происходить не будет:

Читайте также:  Как запаять алюминиевую трубку оловом

Кислород жизненно необходим для человека, а озон в больших концентрациях вреден, хотя, в малых полезен. Озон обладает сильным приятным запахом, а кислород нет.

Графит и алмаз

Как известно, алмаз имеет максимальную твердость по шкале Мооса (10), а графит минимальную (1). Из иллюстрации понятно, что связи между атомами углерода в горизонтальных слоях графита остаются сильными, а в вертикальном разрезе очень слабые, благодаря чему графит снимается послойно, и им удобно писать.

Белый и красный фосфор

Температура плавления красного фосфора составляет 600 °C, тогда как температура плавления белого – всего 44 °C. При этом красный фосфор не воспламеняется до 250 °C, а белый фосфор воспламеняется уже при 45 °C, а при трении – и при более низких температурах.

Таким образом, поразительные отличия разных аллотропных модификаций у фосфора и углерода связаны с тем, что кристаллическая решетка этих элементов может упорядочиваться принципиально разным образом. Фосфор и углерод находятся в центральной части своих периодов в таблице Менделеева, однако являются полноценными неметаллами, будучи расположены в правом верхнем углу таблицы, где сосредоточены элементы с неметаллическими свойствами:

Здесь желтым цветом обозначены неметаллы, зеленым – переходные металлы, розово-желтым – полуметаллы. И также есть олово, которое, в отличие от сурьмы и германия, правильнее считать полноценным металлом. Но оно находится на три периода ниже углерода, поэтому тоже проявляет ярко выраженные аллотропные свойства.

Оловянная чума

Белое олово – это типичный металл, напоминающий свинец, но легче и тверже. Олово известно с глубокой древности и входит в состав бронзы – одного из первых сплавов, изобретенным человеком (олово + медь). Как олово, так и медь – достаточно мягкие и легкоплавкие металлы, а бронза гораздо прочнее, благодаря чему отлично подошла для изготовления оружия, посуды и инструментов, дав начало Бронзовому Веку. Тем не менее, белое олово существует в достаточно узком температурном режиме, между 161 и 13,2 °C. При более низких температурах олово начинает спонтанно переходить в серую аллотропную форму, напоминающую порошок или даже пыль. Максимальной интенсивности этот процесс достигает примерно при -39 °C, и от металлического олова ничего не остается.

Наиболее опасной чертой такой аллотропной модификации олова является заразность. Серое олово при контакте превращает белое олово в серое, если температура остается достаточно низкой. Так, принесенная с мороза оловянная миска, поставленная в шкаф в неотапливаемом помещении, может заразить всю остальную оловянную посуду.

Очень странно, что Роберт Скотт не учел этого обстоятельства – ведь оловянная чума известна давно; есть даже предположение, что именно из-за оловянной чумы, поразившей пуговицы наполеоновской армии в ходе отступления из Москвы, французы оказались в особенно незавидном положении.

Оказывается, что оловянная чума характерна только для химически чистого олова, для защиты от нее достаточно правильно подобрать сплав на основе олова. Например, в наше время широко известен сплав пьютер, предметы из которого были найдены даже в раскопках древнеегипетского культурного слоя. Наиболее качественный пьютер состоит из 95% олова, 2% меди и 3% сурьмы. Именно из такого сплава выполнена статуэтка «Оскар».

Поразительно, но в недавнем прошлом для оловянной чумы нашлось практическое применение, связанное с очисткой лабораторной и промышленной оптики от капелек олова. Капельки чистейшего олова используются в качестве мишеней для плазмы, которая применяется для получения глубокого ультрафиолета, а глубокий ультрафиолет – для вытравливания микросхем. При этом для сборки ультрафиолета в действующий луч используется тончайшая оптика, которая быстро тускнеет, так как на ней конденсируется олово. Оказалось, что именно обработка оптики серым оловом позволяет полностью очистить стекло, не оставив на нем ни малейших царапин. В результате срок службы такого собирающего зеркала значительно увеличивается.

Но оловянная чума – лишь наиболее известная аллотропная болезнь металла. Есть и значительно более экзотические и не менее опасные метаморфозы, о которых я также хочу здесь рассказать.

Цинковая чума

Это явление во многом подобно оловянной чуме и изучено гораздо хуже. Впервые описано примерно в 1920-е годы в среде мастеров и коллекционеров, увлекающихся миниатюрными моделями машин. В чистом виде цинк в производстве практически не используется, а в промышленности применяется как основа сплава «цамак», содержащего также алюминий, магний и медь. Цамак был разработан в США в 1929 году, в СССР и России более употребительно название «ЦАМ» (цинк, алюминий, медь). Правильное соотношение металлов в ЦАМ: цинк 95%, алюминий 4%, медь 1%.

Чума, подобная оловянной, поражает такой сплав не просто при изменении физических условий, но и, по-видимому, неизбежно, если доли металлов в ЦАМ отмерены неправильно. Цинковая чума начинается с характерных вздутий на поверхности металла.

Затем микроструктурные изменения проникают в глубину металла, и он крошится.

Прямая аналогия таких повреждений с оловянной чумой не доказана, хотя, по данным частных экспериментов, прочность металлических моделей после замораживания действительно падает в разы. Согласно другой версии (изложенной здесь, где показаны фотографии с последовательной деградацией модели), ЦАМ заболевает чумой, если в его составе оказывается хотя бы минимальное количество олова или свинца. Если бы эта версия подтвердилась, то означала бы, что оловянная чума заразна даже для цинка, являющегося переходным металлом.

Читайте также:  Хлорид олова азотная кислота

Чаще цинковую чуму связывают с технологическим браком при производстве. Например, в сплаве может быть слишком велика доля алюминия, как в китайских моделях, либо в него могут попадать примеси никеля или сурьмы. То есть, такой сплав уже нельзя считать ЦАМ.

До недавнего времени цинковая чума считалась неизлечимой. Действительно, вздутия на моделях практически необратимы, но болезнь можно затормозить, заливая микротрещины эпоксидной смолой. До сих пор неизвестно, является ли цинковая чума физико-химическим заболеванием или просто заводским браком, поэтому мне были бы интересны подробные исследования или новости на эту тему, если Хабр их подскажет.

Пурпурная чума

Такое название получила еще одна болезнь металлов, заражение золота алюминием. Проблема была обнаружена в 1970-е годы в США, когда в радиолокационном оборудовании стали применяться СВЧ-транзисторы с алюминиевыми проводниками. При прохождении сильного тока алюминий разогревался, затем, остывая, сжимался, проводник деформировался, транзистор выходил из строя. Чтобы справиться с этой проблемой, проводники стали делать из золота, но подложка транзистора могла по-прежнему содержать алюминий. Тогда оказалось, что при сильном нагревании на стыке золота и алюминия между ними образуется сразу несколько интерметаллических соединений, одно другого пагубнее.

Основной недостаток таких сплавов – хрупкость и низкая прочность. Контакт просто отламывается от транзистора. Наиболее распространенное соединение золота и алюминия – AuAl2, где золото составляет по массе примерно 78,5%, а алюминий – 21,5%. Это соединение имеет яркий фиолетовый цвет, почему и получило название «пурпурная чума».

Пурпурная чума возникает при температурах свыше 1000 °C, то есть, близко к температуре плавления золота (1064 °C). Пурпурная чума образуется неравномерно, поэтому конструкция долго сохраняет механическую плотность, пока не станет слишком поздно. Но уже при остывании до 624 °C пурпурная чума сменяется коричневой, гораздо более хрупким соединением Au2Al. А при температурах 100 °C и ниже начинается диффузия: слои с содержанием алюминия начинают проникать вглубь золота, и пурпурная чума охватывает весь образец, а не только стык (это явление называется «эффект Киркендалла»). При этом уменьшается общий объем вещества, и разрушительное воздействие пурпурной чумы становится фатальным.

Опять же, эта болезнь устраняется достаточно легко: проводник нужно легировать, достаточно 1% платины или палладия.

Интересно, что и пурпурная чума нашла своих ценителей. Соединения золота и алюминия эстетично выглядят, а интерметаллид AuAl2 даже был получен ювелирами в 1930 году и запатентован под названием «аметистовое золото». Уже тогда было замечено, что этот сплав очень хрупкий, поэтому его нельзя ковать или вытягивать, но можно осторожно гранить и оправлять как драгоценные камни. Открыв пурпурную чуму, ювелиры продолжили эксперименты, легируя золото, в частности, галлием и индием. Получались сплавы, близкие по свойствам к золоту, но тяготеющие по цвету к синей части спектра, также очень красивые.

Вместо заключения

Процессы, рассмотренные в статье, можно считать специфическими случаями коррозии. Пример истинной коррозии, напоминающий «металлическую чуму» — это образование дикой патины. В отличие от ровной и плотной благородной патины, которая возникает при медленном окислении меди на воздухе, дикая патина является рыхлой, поэтому не только разрушается вместе с поверхностным слоем медного изделия, но и проникает внутрь него, заражая металл ионами хлора. В Санкт-Петербурге, где атмосфера в конце XX века стала гораздо агрессивнее из-за выхлопных газов, усугубивших высокую влажность, дикая патина серьезно поразила скульптуры «Укрощение коня» на Аничковом Мосту.

Чтобы продлить жизнь этих скульптур, их пришлось искусственно покрывать очень тонким слоем закиси меди, имитирующей благородную патину. Возможно, она позволит продлить жизнь этим красавцам.

Вышеизложенный экскурс при всей пестроте приведенных примеров был подготовлен, чтобы продемонстрировать, насколько больно бывает учиться на ошибках. Я не симпатизирую Скотту, который при всей отваге и силе духа последовательно действовал как карьерист и увел с собой в могилу еще нескольких людей, при этом вдохновив своим примером целое поколение полярников. Но мне кажется очень странной гримасой судьбы, что смерть Скотта, напрасная с точки зрения географического подвижничества, могла настолько подстегнуть развитие металлургии и химии металлов, именно в силу своей нелепости и неизбежности.

Источник

«Оловянная чума» прошлого, от которой пострадало немало людей

Принято считать, что олово было известно человечеству еще в первом тысячелетии до нашей эры. О его удивительных свойствах во все времена слагались легенды, объяснить которые ученые смогли лишь в XX веке, когда стали использовать для изучения свойств металлов рентгеновский анализ. Издревле люди замечали, что изделия из олова, например посуда, на холоде вдруг начинали «заболевать»: покрывались пятнами, а потом и «язвами», которые, разрастаясь, превращали вещь в серый порошок. Если «простудившийся» оловянный предмет прислоняли к «здоровому», тот тоже начинал «болеть». Вот так родилось понятие под названием «оловянная чума», от которой порою страдали не только сами вещи, но и люди.

Много позже ученые выяснили, что при температуре ниже 13 градусов по Цельсию олово из пластичного металла белого цвета постепенно превращается в «грязный» порошок. Новая его модификация, о чем исследователям «рассказал» рентгеновский анализ, имеет кристаллическую решетку, в которой атомы связаны менее плотно. Чем ниже температура воздуха, тем «оловянная чума» протекает интенсивнее и быстрее, достигая максимальной скорости при 33 градусах мороза.

Читайте также:  Как паяется нержавейка оловом

Считается, что «оловянная чума» немало поспособствовала гибели британской экспедиции «Терра Нова» под руководством Роберта Скотта, организованной в 1911-1912 годах к Южному полюсу. Продвигаясь по антарктическим льдам к своей цели, полярники оставляли склады с запасами продовольствия и керосина. На обратном пути команда обнаружила, что емкости с горючим пусты, поскольку они были запаяны оловом, а его поразило загадочное разрушение. Без керосина же измученные члены экспедиции не могли согреться и приготовить себе горячую пищу…

Еще более впечатляет легенда о том, что и армия Наполеона Бонапарта потерпела в России полное поражение, оттого что на мундирах солдат и офицеров были оловянные пуговицы. Конечно, данное обстоятельство не могло сыграть решающую роль в трагедии французов, но ощутимо увеличило страдания и потери наполеоновской армии во время отступления при сильных российских морозах. Эту легенду очень любят рассказывать в университетах преподаватели химии, хотя у нее, как считают историки, есть немало слабых мест. Например, неоспоримым является факт, что к тому времени «оловянная чума» была хорошо известна в северных странах Европы и не учесть этого великий стратег Наполеон просто не мог. Но, с другой стороны, он многого не предвидел, а иначе просто не пошел бы на Россию. Так что, как говорится, дыма без огня не бывает.

Многочисленные легенды о «коварстве» металла подтверждают задокументированные случаи. Так, в конце XIX века из Голландии в Москву отправилось несколько вагонов с оловянными слитками. Но по прибытии в Россию вместо брусков белого металла в вагонах оказался лишь серый, ни на что не годный порошок. Или еще такой факт: в начале XX столетия вокруг военных складов Санкт-Петербурга разгорелся настоящий скандал, когда в ходе ревизии выяснилось, что на всех формах и мундирах нет пуговиц. Складских работников даже хотели отдать под суд, но экспертиза странного серого порошка на одежде подтвердила, что это и есть олово, из которого были изготовлены пуговицы, – опять поработала «оловянная чума».

В конце концов человечество справилось с этим «недугом» металла. Попробуйте сегодня найти изделие из чистого олова – у вас ничего не получится. И даже оловянный припой содержит примеси других металлов, которые легко предотвращают эту удивительную метаморфозу, свойственную только олову. Самым стойким сплавом считается пьютер, который состоит из 93 процентов олова, 2 процентов меди и 5 – сурьмы. Из пьютера изготавливают предметы быта, посуду, украшения и так далее. И даже знаменитые оскаровские статуэтки и «Кубок Америки» отлиты из пьютера и только потом покрыты серебром и золотом. Вот так была побеждена предательская «оловянная чума»»…

И не слова о причинах, ради этого только читал и такой облом.

Самое главное забыли написать:

Простое вещество олово полиморфно. В обычных условиях оно существует в виде β-модификации (белое олово), устойчивой выше +13,2 °C. Белое олово — серебристо-белый, мягкий, пластичный металл, образующий кристаллы тетрагональной сингонии, пространственная группа I4/amd, параметры ячейки a = 0,58197 нм, c = 0,3175 нм, Z = 4. Координационное окружение каждого атома олова в нём — октаэдр. Плотность β-Sn равна 7,228 г/см3. При сгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов[8].

При охлаждении белое олово переходит в α-модификацию (серое олово). Серое олово образует кристаллы кубической сингонии, пространственная группа Fd3m, параметры ячейки a = 0,646 нм, Z = 8 со структурой типа алмаза. В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переход β-Sn в α-Sn сопровождается увеличением удельного объёма на 25,6 % (плотность α-Sn составляет 5,75 г/см3), что приводит к рассыпанию олова в порошок. Энтальпия перехода α → β ΔH = 2,08 кДж/моль. Одна модификация переходит в другую тем быстрее, чем ниже температура окружающей среды. При −33 °C скорость превращений становится максимальной. Тем не менее белое олово можно переохладить до гелиевых температур. Белое олово превращается в серое также под действием ионизирующего излучения[9].

Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, β-Sn — металл, а α-Sn относится к числу полупроводников. Ниже 3,72 К α-Sn переходит в сверхпроводящее состояние. Атомы в кристаллической решётке белого олова находятся в электронном s2p2-состоянии. Серое олово — ковалентный кристалл со структурой алмаза и электронным sp3-состоянием. Белое олово слабо парамагнитно, атомная магнитная восприимчивость χ = +4,5·10−6 (при 303 К), при температуре плавления становится диамагнитным, χ = −5,1·10−6. Серое олово диамагнитно, χ = −3,7·10−5 (при 293 К).

Соприкосновение серого олова и белого приводит к «заражению» последнего, то есть к ускорению фазового перехода по сравнению со спонтанным процессом из-за появления зародышей новой кристаллической фазы. Совокупность этих явлений называется «оловянной чумой». Нынешнее название этому процессу в 1911 году дал Г. Коэн. Начало научного изучения этого фазового перехода было положено в 1870 году работами петербургского учёного, академика Ю. Фрицше. Много ценных наблюдений и мыслей об этом процессе высказано Д. И. Менделеевым в его «Основах химии».

Источник