Динамический коэффициент вязкости стали

Содержание
  1. Вязкость
  2. Материал из ТеплоВики — энциклопедия отоплении
  3. Содержание
  4. Сила вязкого трения
  5. Вязкость газов
  6. Вязкость некоторых газов (при 0°C)
  7. Вязкость жидкости
  8. Физический смысл коэффициента вязкого трения
  9. Анализ свойства вязкости жидкости
  10. Ньютоновские и неньютоновские жидкости
  11. Коэффициент вязкости — формулы, виды и размерность величины
  12. Коэффициент динамической вязкости
  13. Коэффициент динамической вязкости газа
  14. Коэффициент вязкости жидкостей
  15. Связь коэффициента вязкости с числами Рейнольдса и силой трения
  16. Примеры решения задач
  17. Коэффициент кинематической вязкости
  18. Заключение
  19. Коэффициент вязкости — формулы, виды и размерность величины
  20. Коэффициент динамической вязкости
  21. Коэффициент динамической вязкости газа
  22. Коэффициент вязкости жидкостей
  23. Связь коэффициента вязкости с числами Рейнольдса и силой трения
  24. Примеры решения задач
  25. Коэффициент кинематической вязкости
  26. Заключение

Вязкость

Материал из ТеплоВики — энциклопедия отоплении

Вязкость (внутреннее трение) (англ. viscosity) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно. Основной закон вязкого течения был установлен И. Ньютоном (1687): В применении к жидкостям различают вязкость:

  • Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии. В системе СИ динамическая вязкость выражается в Па×с (паскаль-секунда), внесистемная единица П (пуаз).
  • Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ.

ν= µ /ρ,

  • ν, м 2 /с – кинематическая вязкость;
  • μ, Па×с – динамическая вязкость;
  • ρ, кг/м 3 – плотность жидкости.

В системе СИ кинематическая вязкость выражается в м 2 /с (квадратный метр на секунду), внесистемная единица Ст(стокс).

Прибор для измерения вязкости называется вискозиметром.

Содержание

Сила вязкого трения

Это явление возникновения касательных сил, препятствующих перемещению частей жидкости или газа друг по отношению к другу. Смазка между двумя твердыми телами заменяет сухое трение скольжения трением скольжения слоев жидкости или газа по отношению друг к другу. Скорость частиц среды плавно меняется от скорости одного тела до скорости другого тела.

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что при наличии любой сколь угодно малой силы тела придут в движение, то есть не существует трения покоя. Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды. При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности.

Сила сопротивления среды зависит от:

  • ее вязкости
  • от формы тела
  • от скорости движения тела относительно среды.

Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:

Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Читайте также:  Марка стали полосы для заземления

Вязкость газов

Вязкость газов (явление внутреннего трения) — это появление сил трения между слоями газа, движущимися друг относительно друга параллельно и с разными по величине скоростями. Вязкость газов увеличивается с ростом температуры

Взаимодействие двух слоев газа рассматривается как процесс, в ходе которого от одного слоя к другому передается импульс. Сила трения на единицу площади между двумя слоями газа, равная импульсу, передаваемому за секунду от слоя к слою через единицу площади, определяется законом Ньютона:

где:
dν /dz — градиент скорости в направлении перпендикулярном направлению движения слоев газа.
Знак минус указывает, что импульс переносится в направлении убывания скорости.
η — динамическая вязкость.

ρ — плотность газа,
(ν) — средняя арифметическая скорость молекул
λ — средняя длина свободного пробега молекул.

Вязкость некоторых газов (при 0°C)

Вещество Вязкость 10 -5 кг/(м*с)
Азот 1,67
Аммиак 0,93
Водород 0,84
Воздух 1,72
Гелий 1,89
Гелий 1,89
Кислород 1,92
Метан 1,04
Углекислый газ 1,40
Хлор 1,29

Вязкость жидкости

Вязкость жидкости — это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока.

Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями. Если между соседними слоями жидкости выделить некоторую площадку S, то согласно гипотезе Ньютона:

  • μ — коэффициент вязкого трения;
  • S – площадь трения;
  • du/dy — градиент скорости

Величина μ в этом выражении является динамическим коэффициентом вязкости, равным:

  • τ – касательное напряжение в жидкости (зависит от рода жидкости).

Физический смысл коэффициента вязкого трения

Физический смысл коэффициента вязкого трения — число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.

На практике чаще используется кинематический коэффициент вязкости, названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности:

Единицы измерения коэффициента вязкого трения:

Анализ свойства вязкости жидкости

Для капельных жидкостей вязкость зависит от температуры t и давления Р, однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.

Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:

  • μt — коэффициент динамической вязкости при заданной температуре;
  • μ — коэффициент динамической вязкости при известной температуре;
  • Т — заданная температура;
  • Т — температура, при которой измерено значение μ;
  • e – основание натурального логарифма равное 2,718282.

Зависимость относительного коэффициента динамической вязкости от давления описывается формулой:

  • μР — коэффициент динамической вязкости при заданном давлении,
  • μ — коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
  • Р — заданное давление,;
  • Р — давление, при которой измерено значение μ;
  • e – основание натурального логарифма равное 2,718282.
Читайте также:  Сталь зсп лист 6

Влияние давления на вязкость жидкости проявляется только при высоких давлениях.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

где σij — тензор вязких напряжений.

Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Источник

Коэффициент вязкости — формулы, виды и размерность величины

Коэффициент вязкости – это величина, используемая для обозначения силы внутреннего трения текучих веществ. Вязкость – разновидность явлений переноса. Жидкости и газы оказывают сопротивление перемещению двух слоев относительно друг друга. Эта особенность характерна для текучих веществ, связана с движением частиц, из которых и состоят вещества.

Вязкость называют внутренним трением. В его основе находится хаотическое движение молекул, передающих импульс между слоями. Такие импульсные обмены выравнивают скорости перемещения слоев.

Коэффициент динамической вязкости

Численное обозначение абсолютной вязкости является индексом сопротивляемости испытуемых веществ взаимному перемещению или скольжению их слоев.

Единицей измерения коэффициента в системе СИ приняты паскаль-секунды:


Физическая основа динамического показателя заключается в его соответствии касательному напряжению, которое происходит между слоями вещества, перемещающимися относительно друг друга, при условии расстояния между ними, равного единице длины, и на скорости, равной единице.

Вязкость жидкости определяется формулой, в которой динамический коэффициент определяет пропорциональность скорости движения слоев и расстояния между ними:

τ – касательное напряжение;

µ — показатель пропорциональности, который является динамическим индексом вещества.

Закон вязкости жидкости был установлен Ньютоном в конце 17 века. Абсолютный показатель зависит от типа газа или жидкости, температуры веществ.

Коэффициент динамической вязкости газа

Для основных газов величины коэффициента при температуре 0 — 600 градусов Цельсия представлены в таблице:

Коэффициент вязкости жидкостей

Для органических жидкостей показания напрямую зависят от температуры. Ниже приведена таблица со значениями абсолютного индекса для веществ при температурах от 0 до 100 градусов Цельсия.

Единица измерения – миллипаскаль-секунды, что соответствует сантипуазам.

Коэффициент динамической вязкости жидкостей уменьшается при условии нагревания вещества. Другими словами, чем выше температура жидкости, тем менее вязкой она становится.

Связь коэффициента вязкости с числами Рейнольдса и силой трения

Английский механик, физик и инженер Оскар Рейнольдс установил (1876 — 1883 гг.), что характер течения зависит от величины, не имеющей размерностью, и называемой числом Re.

Число Рейнольдса используют для отображения соотношения кинематической энергии вещества к энергопотерям на установленной длине в условиях внутреннего трения.

Примеры решения задач

Попробуем решить следующую задачу.

Установить тип движения жидкого вещества по трубам теплообменника, имеющего структуру «труба в трубе». Параметры внутренней трубы – 25*2 мм, внешней – 50*2,5 мм. Массовый расход воды составляет 4000 кг/ч (обозначение G). Плотность жидкости – 1000 кг/м 3 . Абсолютный индекс составляет 1•10 -3 Па*с.

Следует узнать эквивалентный диаметр сечения межтрубного пространства:

Определение скорости воды на основе уравнения расхода:

По формуле Рейнольдса найти число Re:

Подставляя значения, получаем:

Ответ: режим перемещения воды в межтрубном пространстве является турбулентным.

Коэффициент кинематической вязкости

Кинематическая вязкость – это индекс, который отображает отношение абсолютного показателя вещества к его плотности при установленной температуре.

Читайте также:  Вольфрамовая сталь е7в6 химический состав

Физическая формула соотношения выглядит и единицы измерения можно увидеть на картинке:

Действие 4. Вычисление кинематического показателя, исходя из формулы:

Подставив в уравнение полученные и имеющиеся расчетные данные, получим кинематический индекс вещества.

Заключение

Физический смысл коэффициента вязкости заключается в том, что он демонстрирует, чему равна величина F внутреннего трения, действующая на 1 ед. площади поверхности соприкасающихся слоев при единичном градиенте скорости.

Размерность данной величины и перевод из одних единиц измерения в другие показаны на картинке:

Источник

Коэффициент вязкости — формулы, виды и размерность величины

Коэффициент вязкости – это величина, используемая для обозначения силы внутреннего трения текучих веществ. Вязкость – разновидность явлений переноса. Жидкости и газы оказывают сопротивление перемещению двух слоев относительно друг друга. Эта особенность характерна для текучих веществ, связана с движением частиц, из которых и состоят вещества.

Вязкость называют внутренним трением. В его основе находится хаотическое движение молекул, передающих импульс между слоями. Такие импульсные обмены выравнивают скорости перемещения слоев.

Коэффициент динамической вязкости

Численное обозначение абсолютной вязкости является индексом сопротивляемости испытуемых веществ взаимному перемещению или скольжению их слоев.

Единицей измерения коэффициента в системе СИ приняты паскаль-секунды:

Физическая основа динамического показателя заключается в его соответствии касательному напряжению, которое происходит между слоями вещества, перемещающимися относительно друг друга, при условии расстояния между ними, равного единице длины, и на скорости, равной единице.

Вязкость жидкости определяется формулой, в которой динамический коэффициент определяет пропорциональность скорости движения слоев и расстояния между ними:

τ – касательное напряжение;

µ — показатель пропорциональности, который является динамическим индексом вещества.

Закон вязкости жидкости был установлен Ньютоном в конце 17 века. Абсолютный показатель зависит от типа газа или жидкости, температуры веществ.

Коэффициент динамической вязкости газа

Для основных газов величины коэффициента при температуре 0 — 600 градусов Цельсия представлены в таблице:

Коэффициент вязкости жидкостей

Для органических жидкостей показания напрямую зависят от температуры. Ниже приведена таблица со значениями абсолютного индекса для веществ при температурах от 0 до 100 градусов Цельсия.

Единица измерения – миллипаскаль-секунды, что соответствует сантипуазам.

Коэффициент динамической вязкости жидкостей уменьшается при условии нагревания вещества. Другими словами, чем выше температура жидкости, тем менее вязкой она становится.

Связь коэффициента вязкости с числами Рейнольдса и силой трения

Английский механик, физик и инженер Оскар Рейнольдс установил (1876 — 1883 гг.), что характер течения зависит от величины, не имеющей размерностью, и называемой числом Re.

Число Рейнольдса используют для отображения соотношения кинематической энергии вещества к энергопотерям на установленной длине в условиях внутреннего трения.

Примеры решения задач

Попробуем решить следующую задачу.

Установить тип движения жидкого вещества по трубам теплообменника, имеющего структуру «труба в трубе». Параметры внутренней трубы – 25*2 мм, внешней – 50*2,5 мм. Массовый расход воды составляет 4000 кг/ч (обозначение G). Плотность жидкости – 1000 кг/м 3 . Абсолютный индекс составляет 1•10 -3 Па*с.

Следует узнать эквивалентный диаметр сечения межтрубного пространства:

Определение скорости воды на основе уравнения расхода:

По формуле Рейнольдса найти число Re:

Подставляя значения, получаем:

Ответ: режим перемещения воды в межтрубном пространстве является турбулентным.

Коэффициент кинематической вязкости

Кинематическая вязкость – это индекс, который отображает отношение абсолютного показателя вещества к его плотности при установленной температуре.

Физическая формула соотношения выглядит и единицы измерения можно увидеть на картинке:

Действие 4. Вычисление кинематического показателя, исходя из формулы:

Подставив в уравнение полученные и имеющиеся расчетные данные, получим кинематический индекс вещества.

Заключение

Физический смысл коэффициента вязкости заключается в том, что он демонстрирует, чему равна величина F внутреннего трения, действующая на 1 ед. площади поверхности соприкасающихся слоев при единичном градиенте скорости.

Размерность данной величины и перевод из одних единиц измерения в другие показаны на картинке:

Источник