Докажите амфотерные свойства оксида олова 2

Оксид олова II

Оксид олова II
Систематическое
наименование
оксид оловаII
Традиционные названия монооксид олова; олово окись II, олово закись, олово одноокись
Хим. формула SnO
Состояние чёрный порошок
Молярная масса 134.71 г/моль
Плотность 6.45 г/см³
Температура
• плавления (при 80 кПа) 1080 °C
• кипения 1425 °C
• разложения 1976 ± 1 °F [1]
• вспышки негорюч °C
Мол. теплоёмк. 47,8 Дж/(моль·К)
Теплопроводность 47,8 Вт/(м·K)
Энтальпия
• образования -285,98 кДж/моль
Давление пара 0 ± 1 мм рт.ст. [1]
Растворимость
• в воде нерастворим
Кристаллическая структура тетрагональная
Рег. номер CAS 21651-19-4
PubChem 88989
Рег. номер EINECS 244-499-5
SMILES
RTECS XQ3700000
ChemSpider 80298
Токсичность при вдыхании вызывает кашель
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Оксид олова II — неорганическое бинарное химическое соединение олова и кислорода, химическая формула SnO, черно-синие кристаллы (по другим данным коричневато-чёрные).

Содержание

Физические свойства

Темно-синие (почти чёрные) кристаллы, тетрагональная сингония, структура типа РbО (а = 0,3802 нм, с = 0,4837 нм, Z = 2, пространственная группа P42/nmm). При давлении выше 90 ГПа (900 тыс. атм) переходит в ромбическую модификацию (а = 0,382 нм, b = 0,361 нм, с = 0,430 нм, Z = 2, пространственная группа Рm2n).

Оксид олова является полупроводником, тип проводимости которого зависит от примесей и способа получения.

Получение

Оксид олова получают осторожным разложением в инертной атмосфере гидроокиси олова:

Из диоксида олова:

SnO2 + Sn → 1000oC 2 SnO

В лабораторных условиях оксид олова часто получают осторожным нагревом оксалата олова(II) в инертной атмосфере:

С помощью твёрдотельной реакции из хлорида олова II:

Химические свойства

Оксид олова II устойчив на воздухе, амфотерен с преобладанием основных свойств. Мало растворим в воде и разбавленных растворах щелочей. Растворяется в разбавленных кислотах:

и концентрированных кислотах:

Он также растворяется в сильных кислотах, давая ионные комплексы, например Sn(OH2)3 2+ или Sn(OH)(OH2) 2+ , также в менее кислотных растворах — Sn3(OH)4 2+ .

Растворяется в концентрированных растворах щелочей и их расплавах:

SnO + NaOH + H2O ⇄ 20oC Na[Sn(OH)3] SnO + 2 NaOH → 400oC Na2SnO2 + H2O

Также известны другие безводные оловосодержащие соединения, например, K2Sn2O3, K2SnO2.

Диспропорционирует при нагревании:

2 SnO → 400oC SnO2 + Sn

Окисляется кислородом воздуха:

Восстанавливается до металлического олова водородом, углеродом, кремнием, бором и парами этилового спирта:

Sn и O могут образовывать соединения нестехиометрического состава.

Применение

Оксид олова II в подавляющем большинстве случаев используется в качестве исходного продукта в производстве других, как правило, двухвалентных, соединений олова. Может применяться также в качестве восстановителя и в создании рубинового стекла. В незначительных количествах используется в качестве этерификаторного катализатора.

Оксид церия III с оксидом олова II используется в осветительных приборах как люминофор.

Источник

Химические свойства амфотерных оксидов

Перед изучением этого раздела рекомендую изучить следующие темы:

Химические свойства амфотерных оксидов

Амфотерные оксиды проявляют свойства и основных, и кислотных. От основных отличаются только тем, что могут взаимодействовать с растворами и расплавами щелочей и с расплавами основных оксидов, которым соответствуют щелочи.

1. Амфотерные оксиды взаимодействуют с кислотами и кислотными оксидами.

При этом амфотерные оксиды взаимодействуют, как правило, с сильными и средними кислотами и их оксидами.

Например , оксид алюминия взаимодействует с соляной кислотой, оксидом серы (VI), но не взаимодействует с углекислым газом и кремниевой кислотой:

амфотерный оксид + кислота = соль + вода

амфотерный оксид + кислотный оксид = соль

2. Амфотерные оксиды не взаимодействуют с водой.

Оксиды взаимодействуют с водой, только когда им соответствуют растворимые гидроксиды, а все амфотерные гидроксиды — нерастворимые.

амфотерный оксид + вода ≠

3. Амфотерные оксиды взаимодействуют с щелочами.

При этом механизм реакции и продукты различаются в зависимости от условий проведения процесса — в растворе или расплаве.

В растворе образуются комплексные соли, в расплаве — обычные соли.

Формулы комплексных гидроксосолей составляем по схеме:

  1. Сначала записываем центральный атом-комплекообразователь (это, как правило, амфотерный металл).
  2. Затем дописываем к центральному атому лиганды — гидроксогруппы. Число лигандов в 2 раза больше степени окисления центрального атома (исключение — комплекс алюминия, у него, как правило, 4 лиганда-гидроксогруппы).
  3. Заключаем центральный атом и его лиганды в квадратные скобки, рассчитываем суммарный заряд комплексного иона.
  4. Дописываем необходимое количество внешних ионов. В случае гидроксокомплексов это — ионы основного металла.

Основные продукты взаимодействия соединений амфотерных металлов со щелочами сведем в таблицу.

Степень окисле-ния +2 (Zn, Sn, Be)

Металлы В расплаве щелочи В растворе щелочи
Соль состава X2YO2 * . Например: Na2ZnO2 Комплексная соль состава Х2[Y(OH)4] * . Например: Na2[Zn(OH)4]
Степень окисле-ния +3 (Al, Cr, Fe) Соль состава XYO2 (мета-форма) или X3YO3 (орто-форма). Например: NaAlO2 или Na3AlO3 Na3[Al(OH)6] или Na[Al(OH)4 Комплексная соль состава Х3[Y(OH)6] * или реже Х[Y(OH)4]. Например: Na[Al(OH)4]

* здесь Х — щелочной металл, Y — амфотерный металл.

Исключение — железо не образует гидроксокомплексы в растворе щелочи!

Например :

амфотерный оксид + щелочь (расплав) = соль + вода

амфотерный оксид + щелочь (раствор) = комплексная соль

4. Амфотерные оксиды взаимодействуют с основными оксидами.

При этом взаимодействие возможно только с основными оксидами, которым соответствуют щелочи и только в расплаве. В растворе основные оксиды взаимодействуют с водой с образованием щелочей.

амфотерный оксид + основный оксид = соль + вода

5. Окислительные и восстановительные свойства.

Амфотерные оксиды способны выступать и как окислители, и как восстановители и подчиняются тем же закономерностям, что и основные оксиды. Окислительно-восстановительные свойства амфотерных оксидов подробно рассмотрены в статье про основные оксиды.

6. Амфотерные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Например , твердый оксид алюминия Al2O3 вытеснит более летучий углекислый газ из карбоната натрия при сплавлении:

Источник

Оксид олова II

Оксид олова II
Систематическое
наименование
оксид оловаII
Традиционные названия монооксид олова; олово окись II, олово закись, олово одноокись
Хим. формула SnO
Состояние чёрный порошок
Молярная масса 134.71 г/моль
Плотность 6.45 г/см³
Температура
• плавления (при 80 кПа) 1080 °C
• кипения 1425 °C
• разложения 1976 ± 1 °F [1]
• вспышки негорюч °C
Мол. теплоёмк. 47,8 Дж/(моль·К)
Теплопроводность 47,8 Вт/(м·K)
Энтальпия
• образования -285,98 кДж/моль
Давление пара 0 ± 1 мм рт.ст. [1]
Растворимость
• в воде нерастворим
Кристаллическая структура тетрагональная
Рег. номер CAS 21651-19-4
PubChem 88989
Рег. номер EINECS 244-499-5
SMILES
RTECS XQ3700000
ChemSpider 80298
Токсичность при вдыхании вызывает кашель
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Оксид олова II — неорганическое бинарное химическое соединение олова и кислорода, химическая формула SnO, черно-синие кристаллы (по другим данным коричневато-чёрные).

Содержание

Физические свойства

Темно-синие (почти чёрные) кристаллы, тетрагональная сингония, структура типа РbО (а = 0,3802 нм, с = 0,4837 нм, Z = 2, пространственная группа P42/nmm). При давлении выше 90 ГПа (900 тыс. атм) переходит в ромбическую модификацию (а = 0,382 нм, b = 0,361 нм, с = 0,430 нм, Z = 2, пространственная группа Рm2n).

Оксид олова является полупроводником, тип проводимости которого зависит от примесей и способа получения.

Получение

Оксид олова получают осторожным разложением в инертной атмосфере гидроокиси олова:

Из диоксида олова:

SnO2 + Sn → 1000oC 2 SnO

В лабораторных условиях оксид олова часто получают осторожным нагревом оксалата олова(II) в инертной атмосфере:

С помощью твёрдотельной реакции из хлорида олова II:

Химические свойства

Оксид олова II устойчив на воздухе, амфотерен с преобладанием основных свойств. Мало растворим в воде и разбавленных растворах щелочей. Растворяется в разбавленных кислотах:

и концентрированных кислотах:

Он также растворяется в сильных кислотах, давая ионные комплексы, например Sn(OH2)3 2+ или Sn(OH)(OH2) 2+ , также в менее кислотных растворах — Sn3(OH)4 2+ .

Растворяется в концентрированных растворах щелочей и их расплавах:

SnO + NaOH + H2O ⇄ 20oC Na[Sn(OH)3] SnO + 2 NaOH → 400oC Na2SnO2 + H2O

Также известны другие безводные оловосодержащие соединения, например, K2Sn2O3, K2SnO2.

Диспропорционирует при нагревании:

2 SnO → 400oC SnO2 + Sn

Окисляется кислородом воздуха:

Восстанавливается до металлического олова водородом, углеродом, кремнием, бором и парами этилового спирта:

Sn и O могут образовывать соединения нестехиометрического состава.

Применение

Оксид олова II в подавляющем большинстве случаев используется в качестве исходного продукта в производстве других, как правило, двухвалентных, соединений олова. Может применяться также в качестве восстановителя и в создании рубинового стекла. В незначительных количествах используется в качестве этерификаторного катализатора.

Оксид церия III с оксидом олова II используется в осветительных приборах как люминофор.

Источник