Электролиз раствора хлорида олова уравнение катодного процесса

Получение гидроксида свинца

Задача 1107.
Гидроксид свинца (II) может быть получен в результате взаимодействия: а) свободного металла с водой; б) оксида свинца (II) с водой; в) соли свинца (II) со щелочью?
Решение:
Гидроксид свинца (II) может быть получен при действии щелочей на растворимые соли свинца (II):

В избытке щёлочи осадок гидроксида свинца (II) растворяется с образованием аквакомплекса:

В кислотах гидроксид свинца (II) растворяется с образованием солей, реакция протекает по механизму реакции нейтрализации:

Электролиз водного раствора хлорида олова (II)

Задача 1108.
Какой из процессов протекает на оловянном аноде при электролизе водного раствора хлорида олова (II)?
а) Sn = Sn 2+ + 2 1 0 = -0,14 В;
б) 2Cl – = Cl2 + 2 2 0 = 1,36 B;
в) 2H2O = O2 + 4H + + 4 3 0 = 1,23 B.
Решение:
Стандартный электродный потенциал олова (-0,14 В) несколько выше, чем потенциал водорода в нейтральной среде (-0,41 В). Это значит, что при электролизе раствора SnCl2 на катоде в основном будет происходить разряд ионов Pb 2+ (восстановление) и выделение металлического свинца:
Sn 2+ + 2 = Sn 0
На аноде происходит противоположный процесс – окисление свинца, так как его стандартный электродный потенциал намного меньше потенциалов окисления хлора и воды (соответственно 1,36 и 1,23 В):
Sn 0 — 2 = Sn 2+
Таким образом, при электролизе водного раствора SnCl2 сводится к растворению свинца (металла анода) и выделению его на катоде.

Источник

Himiya / Laby / Лабораторная работа №9м

Лабораторная работа 9.

Цель работы. Изучение закономерностей электролиза водных растворов электролитов.

Опыт 1. Электролиз раствора хлорида олова.

Налил в электролизёр 0,5 М раствора SnCl2, погрузил электроды и пропустил электрический ток. Через несколько секунд обнаружил, что на катоде выделилось олово, аноде газообразный хлор.

Опыт 2. Электролиз водного раствора иодида калия.

Налил в электролизёр раствор KI , затем опустил графитовые электроды и подключил к источнику тока. Заметил выделение водорода на катоде, однако газ на аноде не выделился. Выделился I2.

Опыт 3. Электролиз водного раствора сульфата натрия.

Заполнил электролизер водным раствором сульфата натрия. Добавил

1-2 капли метилоранжа в прианодное пространство и 1-2 капли фенолфталеина в прикатодное пространство. Раствор не перемешивал. Опустил графитовые электроды и подключил к источнику тока. Пронаблюдал на обоих электродах выделение газа и изменение окраски в катодном и анодном пространствах. Ионы OH — окрасили раствор в катодном пространстве в малиновый цвет. На катоде выделяется водород. Ионы Н + изменили цвет в анодном пространстве. На аноде выделился кислород.

Опыт 4. Электролиз раствора сульфата меди с нерастворимым анодом.

В электролизер налил раствор CuSO4 и опустил графитовые электроды. Включил ток. Через несколько минут увидел выделение кислорода на аноде. Здесь наблюдался перенос меди с анода на катод, что широко используется на практике в целях нанесения металлических покрытий или рафинирования металлов.

Опыт 5. Электролиз раствора сульфата меди с растворимым анодом.

В электролизер налил 1М раствор CuSO4. В качестве анода использовал Cu пластину, катодом служил графитовый стержень. Во время электролиза наблюдал за процессом, протекающим на катоде. Обратил внимание на то, что в начале опыта на катоде выделялись пузырьки водорода, а затем по мере окрашивания раствора в голубой цвет скорость выделения водорода уменьшалась и одновременно катод начинал покрываться слоем меди.

Читайте также:  Каков состав атомов аргона йода олова

Вывод: В данной лабораторной работе я изучил закономерности электролиза водных растворов электролитов, узнал о приборе – электролизёр, научился составлять уравнения электролиза солей, распознавать продукты реакции практически (исходя из практики на опытах) и теоретически (исходя из положения металла в ряде активности металлов)

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Рабочая тетрадь по химии (стр. 8 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10

Рис. 5.6. Схема установки для проведения электролиза

Пример 5.6. Рассмотрим электролиз раствора хлорида железа (II) с угольными электродами (рис. 5.7). Это пример электролиза с инертным (нерастворимым) анодом.

Рис.5.7. Схема электролиза раствора хлорида железа (II)

В растворе соль диссоциирует на ионы: FeCl2 → Fe 2+ + 2 Cl ¯.

На катоде происходит разряд ионов Fe 2+ и выделение металлического железа

Fe 2+ + 2 ē → Fe 0.

У анода разряжаются хлорид-ионы: 2 Cl ¯ ─ 2 ē → Cl 2.

В зависимости от условий электролиза в качестве побочного продукта на катоде может выделяться водород.

Электролиз раствора хлорида олова (II) с угольными электродами

В электролизёр (рис. 5.6) с раствором SnCl2 помещаются два угольных электрода, включается прибор и пропускается постоянный электрический ток, под действием которого происходят процессы восстановления на катоде, подключённому к отрицательному полюсу и окисления на аноде, подключённому к положительному полюсу. По окончании электролиза на катоде видны большие кристаллы выделившегося металлического олова.

В растворе дихлорид олова диссоциирует на ионы олова и хлорид-ионы. Положительно заряженные ионы олова перемещаются к отрицательно заряженному катоду и на нём разряжаются, т. е. восстанавливаются до металлического олова. Следовательно, на катоде выделяется металл. Олово относится к не очень активным металлам, а поэтому может быть получено в свободном состоянии при электролизе водного раствора своей соли. При определённом режиме электролиза одновременно с оловом может выделяться водород вследствие разряда молекул воды.

К положительно заряженному аноду перемещаются хлорид-ионы, происходит их окисление до молекулярного хлора. Угольный анод относится к инертным анодам и не окисляется (рис. 5.8).

Рис. 5.8. Схема электролиза SnCl2 с инертным анодом

При электролизе водного раствора хлорида олова (II) с инертным анодом:

· на катоде выделяется металлическое олово,

· на аноде выделяется газообразный хлор

Электролиз раствора йодида калия с угольными электродами

В раствор йодида калия, налитый в электролизёр, добавляется по несколько капель фенолфталеина и крахмала. В электролит помещаются угольные электроды, которые подключаются к источнику постоянного тока и проводится электролиз.

На катоде наблюдается выделение газа и через некоторое время в прикатодном пространстве появляется розовое окрашивание фенолфталеина, что свидетельствует о щелочной реакции среды. В то же время синяя окраска крахмала в прианодном пространстве указывает на выделение свободного йода.

Читайте также:  Чем паять алюминий оловом

К катоду перемещаются катионы калия, имеющие потенциал разряда значительно более отрицательный, чем потенциал разряда воды, поэтому на катоде происходит разряд воды. Наряду с выделением водорода происходит накопление в прикатодном пространстве гидроксильных ионов, окрашивающих фенолфталеин в розовый цвет.

На инертном (угольном) аноде разряжаются йодид-анионы, выделяется свободный йод, которому соответствует качественная реакция с крахмалом, сопровождающаяся синим окрашиванием (рис. 5.9).

Рис. 5.9. Схема электролиза KJ с инертным анодом

Электролиз водного раствора йодида калия с инертным анодом сопровождается:

· на катоде выделением водорода и подщелачиванием раствора;

· на аноде выделением йода.

Электролиз раствора сульфата меди с медным анодом

В раствор сульфата меди помещаются медный анод, угольный катод и проводится электролиз. Через несколько минут ток отключается и при осмотре угольного катода отмечается выделение на нём меди.

Составьте схему процесса электролиза сульфата меди с медным анодом: покажите направление движения ионов к электродам, составьте уравнения катодного и анодного процесса.

Какие изменения будут происходить с электродами в результате электролиза?

Во второй части опыта проводится переполюсовка электродов, т. е. угольный электрод с осаждённой на нём медью делается анодом и имеется, по-сути, медный анод. Катод будет также медным.

Составьте схему второй части процесса электролиза: покажите направление движения ионов к электродам, укажите, из какого материала состоят электроды, составьте уравнения катодного и анодного процесса.

Через несколько минут проведения электролиза медь на аноде растворяется и на угольном электроде (аноде) начинает выделяться газ (третья часть опыта).

Составьте схему третьей части процесса электролиза: покажите направление движения ионов к электродам, укажите, из какого материала состоят электроды, составьте уравнения катодного и анодного процесса.

Оказывает ли материал катода на суть катодного процесса? ______________________

Какой процесс идёт на растворимом аноде? ___________________________________

Как влияет природа аниона на процесс на аноде? ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Пример 5.7. При электролизе раствора, содержащего нитраты серебра, меди (II), свинца и натрия в стандартных условиях последовательность выделения веществ на катоде следующая:

1) Ag, Pb, Cu, Na 2) Ag, Pb, Cu, H2, Na 3) Ag, Pb, Cu, H2 4) Ag, Cu, Pb, H2

Решение. Относительное положение металлов в ряду активности следующее:

Последовательность их разряда обратная, причём щелочной металл натрий из водных растворов не восстанавливается и вместо него выделяется водород (табл. 5.3)..

Правильный ответ 4.

Упражнение 5.5. При электролизе раствора, содержащего нитраты меди (II), серебра, никеля и кальция в стандартных условиях, последовательность выделения веществ на катоде имеет вид …

1) Ag, Ni, Cu, Сa 2) Ag, Cu, Ni, H2, Сa 3) Ag, Cu, Ni, H2 4) Ag, Ni, Cu, H2

Упражнение 5.6. Продуктами, выделяющимися на инертных электродах при электролизе водного раствора серной кислоты, являются …

1) Н2 и SO2 2) O2 и SO2 3) H2 и S 4) H2 и O2

Читайте также:  Зачем заливают сварные швы оловом

Для решения воспользуйтесь табл. 5.3 и табл. 5.4.

ТИПОВЫЕ КОНТРОЛЬНЫЕ УПРАЖНЕНИЯ

1. Продуктами, выделяющимися на инертных электродах при электролизе водного раствора хлорида калия, являются …

1) K и Cl2 2) H2 и Сl2 3) H2 и O2 4) K и O2

2. Продуктами, выделяющимися на инертных электродах при электролизе водного раствора сульфата натрия, являются …

1) Na и SO2 2) H2 и S 3) H2 и O2 4) Na и O2

3. Металлом, который нельзя получить электролизом раствора его соли, является …

1) Al 2) Cr 3) Pb 4) Ag

4. Уравнение процесса протекающего на инертном катоде при электролизе водного раствора гидроксида натрия, имеет вид …

1) 2H+ + 2e → H2 2) 2H2O – 4e → O2 + 4H+

2) 2H2O + 2e → H2 + 2OH ˉ 4) Na+ + e → Na

5. Уравнение процесса, протекающего на инертном аноде при электролизе водного раствора CaCl2, имеет вид.. 1) 2H2O – 4e → O2 + 4H+ 2) 4OH ˉ − 4e → O2 + 2H2O

3) Сa2+ + 2e → Сa0 4) 2Cl ˉ − 2e →Cl2

5.3. КОРРОЗИЯ МЕТАЛЛОВ

ПОДГОТОВКА К ВЫПОЛНЕНИЮ ЗАДАНИЯ

Изучить и усвоить:

· лекцию «Коррозия металлов» [Часть 2 УМК, раздел 5.4].

· видеозапись лабораторной работы «Коррозия и защита металлов» [Приложение к УМК: диск 4].

Цель выполнения задания

· Усвоить суть химической и электрохимической коррозии металлов.

· Изучить факторы, влияющие на скорость коррозии.

·Ознакомиться с некоторыми методами защиты металлов от коррозии.

Коррозией металлов называется процесс их самопроизвольного разрушения под воздействием окружающей среды. Коррозия представляет собой окислительно-восстановительный процесс, протекающий на границе раздела металл – среда. Металл всегда окисляется, а компоненты окружающей среды (О2, СО2, SO2, Cl2, H+, H2O и др.) восстанавливаются. В результате коррозии образуются продукты окисления металла – оксиды, гидроксиды, соли. Такое превращение металла сопровождается существенным изменением его механических свойств.

По механизму процесса различают химическую и электрохимическую коррозию.

Химическая коррозия происходит под воздействием агрессивных газообразных компонентов окружающей среды при высоких температурах (газовая коррозия) или под воздействием некоторых агрессивных жидкостей – неэлектролитов. Основным признаком химической коррозии является то, что она происходит без возникновения в системе электрического тока, когда реакции окисления и восстановления протекают в одной точке поверхности.

Электрохимическая коррозия протекает в электролитах и сопровождается возникновением коррозионного тока между анодными и катодными участками поверхности металла. Функцию анода выполняет более активный металл, на нём идёт окисление, в результате чего металл разрушается и его ионы «уходят» в коррозионную среду:

Ме 0 − n ē → Ме n+. (5.6)

Освободившиеся в результате окисления электроны переходят на катод и восстанавливают окислитель из среды (рис. 5.10). Вид процесса зависит от природы окислителя и состава среды.

Рис. 5.10. Схема электрохимической коррозии

Уравнения наиболее часто встречающихся катодных процессов приведены в табл. 5.5

Уравнения катодных коррозионных процессов в различных средах

Источник