Ферритные нержавеющие стали марки aisi

Содержание
  1. Марки нержавеющей стали
  2. Содержание статьи
  3. Виды нержавеющей стали
  4. Марки нержавеющей стали и их характеристики
  5. Характеристика нержавеющих сталей aisi
  6. Марки нержавеющей стали aisi:
  7. Нержавеющая сталь aisi 304
  8. Нержавеющая сталь aisi 316
  9. Нержавеющая сталь aisi 316Т
  10. Нержавеющая сталь aisi 321
  11. Нержавеющая сталь aisi 430
  12. Нержавеющая сталь aisi 201
  13. Нержавеющая сталь AISI 430. Характеристики, особенности, применение.
  14. Химические свойства нержавеющей стали AISI 430
  15. Применение нержавеющей стали aisi 430
  16. Нержавеющие стали: феррит, мартенсит, аустенит
  17. Группы нержавеющих сталей по химическому составу
  18. Хромистые стали
  19. Хромоникелевые стали
  20. Хромомарганцевоникелевые стали
  21. Ферритные нержавеющие стали
  22. Классы нержавеющих сталей по микроструктуре
  23. Ферритные стали
  24. Мартенситные и мартенситно-ферритные стали
  25. Аустенитные стали
  26. Аустенитно-ферритные стали
  27. Влияние хрома на коррозионную стойкость стали
  28. Двухфазные нержавеющие стали
  29. Аустенитные нержавеющие стали
  30. Дисперсионно твердеющие нержавеющие стали
  31. Какая марка стали лучше для банной печки
  32. Расшифровка марок
  33. Разновидности жаропрочных и жаростойких материалов по структурным критериям
  34. Аустенитный класс
  35. Структура аустенитов
  36. Аустенитно-ферритный класс
  37. Мартенситный класс
  38. Перлитный класс
  39. Ферритный класс
  40. Мартенситно-ферритный класс

Марки нержавеющей стали

Содержание статьи

В начале прошлого столетия специалистам в области металлургической промышленности удалось заметить, что взаимодействие хрома и кислорода является лучше, чем с железом. Именно в то время для того чтобы на железо воздух влиял наименьшим образом металлурги стали смешивать его с хромом. Так появилась нержавеющая сталь, которая сегодня незаменимым материалом для современно промышленности.

Важно: Следует заметить, что полностью избавить железо от появления коррозии практически не удастся. Рано или поздно даже нержавеющая сталь тоже покрывается ржавчиной. Правда для этого требуется больше времени.

Виды нержавеющей стали

Нержавеющая сталь представляет собой привлекательный материал для использования в современной промышленности. Он состоит из железа и примеси хрома.

Внимание: Для того чтобы обеспечить наиболее длительную защиту железа от появления коррозии необходимо при производстве нержавеющей стали добавить в него не менее десяти процентов хрома.

Также в смесь для производства нержавейки добавляются и другие элем6нты, которые представлены:

Они необходимы для того чтобы материал приобрел свои физико-хиимические качества и стал более прочным.

Благодаря смеси железа и других элементов появляется материал, который способен противостоять появлению коррозии. В зависимости от пропорциональности добавленных элементов нержавеющий материал получается прочным и он способен противостоять даже высоким температурам. Благодаря пластичности нержавеющую сталь используют в самых разных отраслях промышленности.

Железо само по себе покрывается ржавчиной достаточно быстро. Если смешать его с хромом и другими элементами на его поверхности образуется невидимая пленка, которая предотвращает поступление к нему кислорода. В результате окисления не производится. Данный слой является достаточно прочным. Что делает материал более устойчивым к образованию трещин, вмятин и многих других дефектов. Сталь способна восстанавливаться со временем самостоятельно.

Марки нержавеющей стали и их характеристики

В современном мире представлено более двухсот пятидесяти видов нержавеющей стали. Они отличаются по своим сериям или маркам и по свойствам. Самыми популярными марками нержавеющей стали в настоящее время являются те виды, которые принадлежат к 300-й и 400-й серии. Они обладают высоким уровнем стойкости к появлению коррозии. К тому же у них слой защитной пленки является достаточно прочным из-за оптимально-подобранной пропорциональности использованных при производстве элементов. Нержавеющая сталь данных серий обладает высокой прочностью и пластичностью. Она активно применяется для производства различных предметов в современной промышленности. В скором времени конкуренцию данным сериям может составить 200 серия стали, которая, по мнению потребителей, имеет оптимальное сочетание стоимости и качества.

Характеристика нержавеющих сталей aisi

На современном рынке большим спросом пользуется нержавеющая сталь трехсотой серии. Она подразделяется на несколько видов в зависимости от химического состава:

  • аустенитная,
  • аустенитно- ферритная,
  • аустенитно-мартенситная.

В стали этих видов содержится разное количество никеля, хрома. углерода.

Марки нержавеющей стали aisi:

Нержавеющая сталь aisi 304

aisi 304 (08Х18Н10) получила широкое распространение в пищевой промышленности. Она отлично подходит для сварки и для тог, чтобы противостоять появлению ржавчины.

Нержавеющая сталь aisi 316

aisi 316 (10Х17Н13М2) о бразуется, если в сталь марки aisi 304 (08Х18Н10) добавить такой элемент, как молибден. Данная марка нержавейки получила широкое распространение в судостроительной, нефтегазовой и химической видах промышленности. Она устойчива к агрессивным средам.

Нержавеющая сталь aisi 316Т

aisi 316Т (10Х17Н13М2Т) о бладает высоким уровнем прочности за счет того, что в ней содержится больше титана, чем в предыдущих марках. Она нашла широкое применение в области создания оборудования для химической и пищевой промышленности.

Нержавеющая сталь aisi 321

aisi 321 (12-08Х18Н10Т) с амое большое количество титана среди всех марок трехсотой серии. Способна выдерживать температуры нагревания до 800 градусов Цельсия.

Нержавеющая сталь aisi 430

Среди марок четырехсотой серии наиболее широкое применение получила марка aisi 430 (12Х17). В целом вся серия характеризуется тем, что в нее входят марки нержавеющей стали, которые созданы с высоким содержанием хрома. Для марки aisi 430 характерно то, что материал отлично гнется и подвергается сварочным работам. Такую сталь можно использовать для мест с высокими температурными перепадами. Чаще всего ее используют для декора зданий и в нефтегазовой отрасли промышленности.

Нержавеющая сталь aisi 201

В двухсотой серии нержавеющей стали тоже есть достойные марки, на которые следует обратить свое внимание. Среди них наиболее сильно выделяется сталь марки aisi 201 (12Х15Г9НД). Она отличается от более дорогих марок из других серий тем, что в ней вместо никеля используется смесь таких элементов, как азот и марганец. Благодаря своим химическим и физическим качествам она получила широкое распространение в пищевой и медицинской промышленности. Она также подходит для производства разного рода ограждений, труб.

Источник

Нержавеющая сталь AISI 430. Характеристики, особенности, применение.

Нержавеющая сталь AISI 430 – коррозионностойкая ферритная хромистая безникелевая жаропрочная стальобщего применения. В данной марке нержавеющей стали отсутсвует никель, поэтому цена как на саму сталь, так и изделия из этой нержавейки гораздо ниже стоимости сталей серии 300.

Данный вид нержавеющей стали отличается:

  • высокими прочностными и механическими свойствами;
  • коррозионная стойкость высока, в том числе и атмосферная (атмосферная коррозия металлов является самым распространенным видом коррозии). Связано это с достаточно большим содержанеим в составе хрома и низким содержанием углерода.
  • хорошо обрабатывается, т. е. сплав пластичен, достаточно хорошо поддается вытяжке, штамповке, вальцовке и т.д.

Обычно сталь марки AISI 430 позиционируют по химическому составу как аналог отечественной марки 12Х17. Однако, низкая концентрация углерода в стали обуславливает ненужность ее дополнительной стабилизации титаном, поскольку реальное содержание углерода гарантирует отсутствие склонности стали к межкристаллитной коррозии при повышенных температурах (интенсивное карбидообразование в стали 430 начинается лишь при температуре свыше 1000 0 С) и, кроме того, обеспечивает ее отличную свариваемость. Поэтому, по своим эксплуатационным характеристикам данная марка стали является улучшенным аналогом стали 08Х17Т, которая, в свою очередь, по ГОСТ 5632-72 «рекомендуется в качестве заменителя стали марок12Х18Н10Т и 12Х18Н9Т». Дополнительными преимуществами является то, что в отличие от этих аустенитных никельсодержащих марок, сталь 430 нечувствительна к коррозионному межкристаллитному разрушению в температурном интервале 500-800 0С, а также гораздо меньше чувствительна к хлоридному растрескиванию под нагрузкой.

Читайте также:  Марка стали 10х14аг15 расшифровка

Благодаря низкому коэффициенту термического расширения, нержавеющая сталь AISI430 оптимальна для изделий, испытывающих перепады температур, а высокая теплопроводность предопределяет преимущества использования этой стали в системах теплообмена. Обладая сравнительно низкой тепловой инерцией (удельной теплоемкостью), сталь 430 при меньших энергозатратах быстрее прогревается и охлаждается, что позволяет избежать возможного инерционного перегрева.

Химические свойства нержавеющей стали AISI 430

81

Химический элемент Обозначение Процентный состав элементов в нержавеющей стали AISI 430
Углерод C до 0,12
Кремний Si до 0,8
Марганец Mn до 0,8
Никель Ni до 0,01 — 0,02
Сера S до 0,3
Фосфор P до 0,4
Хром Cr 16-18
Титан Ti
Железо Fe
Молибден Mo

Применение нержавеющей стали aisi 430

Имея высокую доступность и относительно невысокую стоимость нержавеющая сталь AISI 430 (нержавейка 430) используется повсеместно и в самых различных областях. Из данной нержавейки изготавливают:

  • Дымоходы для банных и отопительных печей;
  • Баки для стиральных и посудомоечных машин, корпуса холодильников, микроволновых печей и т.д.;
  • Бак для бани, резервуары для воды, бак для душа;
  • Различный крепёж: шайбы, валики, метизы;
  • Системы теплообмена, детали выхлопных систем автомобилей;
  • трубопроводы (труба aisi 430), резервуары, холодильные и варочные установки. Металлические стеллажи, столы;
  • Декоративные детали для интерьеров и экстерьеров.

Источник

Нержавеющие стали: феррит, мартенсит, аустенит

Группы нержавеющих сталей по химическому составу

В зависимости от набора основных легирующих элементов в химическом составе различают следующие группы нержавеющих сталей:

  • Хромистые.
  • Хромоникелевые.
  • Хромомарганцевоникелевые.

Хромистые стали

Как ясно из названия группы, главным легирующим элементом хромистых сталей является хром. Согласно ГОСТ 5632-2014 номинальное содержание хрома может быть 13, 17 или 25/28 %. К первому типу принадлежат марки 08Х13, 13х13, 20Х13, 30Х13, 40Х13, ко второму — 12Х17 и 08Х17Т, к третьему — 15Х25Т и 15Х28. Хромистые стали второго и третьего типа относятся к ферритному классу, а первого типа — могут иметь ферритный, мартенситный или феррито-мартенситный класс.

Хромоникелевые стали

Хромоникелевые стали содержат 14-20% хрома, 12-14% никеля. Устойчивы к кислотам и высоким температурам, хорошо поддаются технологическим деформациям, в частности, штамповке, и свариванию. Обработке резанием поддаются удовлетворительно. К хромоникелевым относят стали марок 20X17Н2, 14Х17Н2, 20X17Н2, 14X17Н2.

Хромомарганцевоникелевые стали

Частичная замена никеля более дешевым марганцем способствует снижению стоимости материала без заметного снижения его полезных свойств. Добавление марганца повышает пластичность нержавеющей стали и помогает сохранить немагнитность, увеличивается ударная вязкость при низких температурах. Но, следует учитывать, что хромомарганцевоникелевые стали трудно свариваются и склоны к отпускной хрупкости. Основные представители данной группы: 03Х20Н16АГ6, 07Х21Г7АН5, 10Х14Г14Н4Т.

С учетом структуры своей кристаллической решетки хромоникелевые и хромомарганцевоникелевые стали делятся аустенитные, аустенитно-ферритные, аустенитно-ферритные и аустенитно-карбидные.

Ферритные нержавеющие стали

Ферритные нержавеющие стали содержат до 30 % хрома и не более 0,12 % углерода. Благодаря своей объемноцентрированной кристаллической структуре (ОЦК) ферритные стали имеют хорошую прочность и приличную пластичность , которые достигаются за счет упрочнения твердого раствора и деформационного упрочнения. Ферритные стали являются ферромагнитными или, говоря по-простому, «магнитят». Они не поддаются термической обработке. Ферритные стали имеют отличную коррозионную стойкость, обладают умеренной способностью поддаваться обработке давлением и являются относительно дешевыми.

К ферритным нержавеющим сталям относятся стали 08Х13, 12Х17, 08Х17Т, 15Х25Т, 15Х28 по ГОСТ 5632-72.

Классы нержавеющих сталей по микроструктуре

Различия в механических и технологических свойствах сталей обусловлены особенностями их кристаллической структуры. По этому признаку нержавеющие стали подразделяют на:

  • Ферритные.
  • Мартенситные.
  • Мартенситно-ферритные.
  • Аустенитные.
  • Аустенитно-мартенситные.
  • Аустенитно-ферритные.
  • Аустенитно-карбидные.

Ферритные стали

Содержание хрома в этом типе сталей приближается к 20%. Ферритные стали имеют высокую устойчивость к химически агрессивным средами, ярко выраженные магнитные свойства, хорошо поддаются обработке. Недорогие ферритные стали склонны к росту зерна и, как следствие, – к межкристаллитной коррозии. При высоких температурах происходит охрупчивание металла. Используются для производства неответственных конструкций, а также изделий, предназначенных для эксплуатации в агрессивных средах. К ферритному классу относятся стали марок: 08X17Т, 12X17 (AISI 430), 15X28, 15Х25Т, 15Х25Т.

Мартенситные и мартенситно-ферритные стали

Содержат до 20% хрома. Обладают низким порогом хладоломкости, пластичны, имеют высокую ударную вязкость, не склонны к образованию трещин. Устойчивы к износу, коррозии в слабоагрессивных средах и атмосфере. Свариваемость разных марок мартенситных сталей сильно разнится. Некоторые мартенситные стали склонны к тепловой хрупкости. Применяются для изготовления режущего инструмента, измерительных приборов, высокопрочных деталей и ответственных конструкций, предназначенных для эксплуатации в широком диапазоне температур. Марки мартенситных сталей: 20Х13 (AISI 420), 40Х13, 12Х13.

Аустенитные стали

Суммарное содержание хрома и никеля достигает 33%. Аустенитные стали обладают наилучшим сочетанием технологических качеств. Им свойственна пластичность, высокая коррозионная стойкость в большинстве рабочих сред, прочность. К аустенитному классу относятся стали 06ХН28МДТ, 08Х18Н10 (AISI 304), 10Х13Н17М2 (AISI 316), 12Х15Г9НД (AISI 201), 12Х18Н10Т (AISI 321), 20Х23Н18 (AISI 310S). Из них прокатывают множество видов полуфабрикатов: нержавеющие листы, трубы, сортовые изделия и арматуру.

Аустенитно-ферритные стали

Отличаются от аустенитных и ферритных сталей большей прочностью, менее склонны к росту зерна и межкристаллитной коррозии, устойчивы к органическим кислотам и азотной кислоте. Хорошо поддаются свариванию, не намагничиваются. По устойчивости к хладоломкости занимают промежуточное положение между ферритными и аустенитными сталями и хуже поддаются пластическим деформациям по сравнению с аустенитными сплавами. Используются для производства оборудования для металлургической, пищевой, химической, промышленности, в судостроении. К аустенитно-ферритным сталям относятся: 09ХН21Н6М2Т, 10Х25Г6ФТ, 08Х20Н6МД2Т, 09Х22Н5Т, 10Х25Н6Т.

Влияние хрома на коррозионную стойкость стали

Именно хром делает сталь нержавеющей. Кроме того, хром является элементом, повышающим устойчивость феррита. Рисунок 1 иллюстрирует влияние хрома на диаграмму состояния железо-углерод. Хром заставляет аустенитную область сжаться тогда, как ферритная область увеличивается в размерах. При высоком содержании хрома и низком содержании углерода феррит является единственной фазой вплоть до температуры ликвидуса.


Рисунок 1 – Влияние 17 % хрома на диаграмму состояния железо-углерод. При низком содержании углерода феррит является устойчивым при всех температурах. Буква «М» обозначает «металл», например, хром или железо, а также другие легирующие элементы.

Различают несколько видов нержавеющих сталей, основанных на различиях кристаллической структуры и упрочняющих механизмов.

Двухфазные нержавеющие стали

В некоторых случаях в структуре нержавеющих сталей намеренно получают смесь различных фаз. При соответствующем контроле химического состава и режимов термической обработки получают сталь с содержанием, например, 50 % феррита и 50 % аустенита. Такая комбинация фаз в структуре стали обеспечивает ей такое уникальное сочетание механических свойств, коррозионной стойкости, способности к обработке давлением и свариваемости, которое невозможно достичь в никаких других нержавеющих сталях. Иногда их называют по-зарубежному — дуплексные стали.

К двухфазным нержавеющим сталям относятся стали 08Х22Н6Т, 03Х23Н6, 08Х21Н6М2Т, 03Х22Н6М2, 08Х18Г8Н2Т, 03Х24Н6М3 по ГОСТ 5632-72.

Источник: D. Askeland, P. Fulay, W. Wright – The Science and Engineering of Materials, 2011

Аустенитные нержавеющие стали

Никель является элементом, который повышает устойчивость аустенита. Присутствие никеля в стали увеличивает размер аустенитной области, тогда как феррит почти полностью изчезает из железо-хромово-углеродистых сплавов (рисунок 3).


Рисунок 3 – Сечение диаграммы состояния железо-хром-никель-углерод при 18 % хрома и 8 % никеля. При низком содержании углерода аустенит является устойчивым при комнатной температуре.

Если содержание углерода становиться ниже 0,03 %, то карбиды в стали вообще не образуются и сталь является полностью аустенитной при комнатной температуре (рисунок 4).

Рисунок 4 – Аустенитная нержавеющая сталь

Аустенитные нержавеющие стали обладают высокой пластичностью, способностью обработке давлением и коррозионной стойкостью.

Термическая обработка нержавеющих сталей аустенитного класса заключается в закалке в воде с температуры 1050-1100 °С. Такой нагрев вызывает растворение карбидов хрома, а быстрое охлаждение фиксирует состояние пресыщенного твердого раствора. Очень важно отметить, что в результате закалки твердость этих сталей не повышается, а снижается. Поэтому для аустенитных нержавеющих сталей закалка является смягчающей термической операцией.

Свою прочность аустенитная нержавеющая сталь получает за счет холодного наклепа — нагартовки. Аустенитные стали могут получать деформационное упрочнение до значительно более высоких величин, чем ферритные нержавеющие стали. При деформациях порядка 80-90 % предел текучести достигает 980-1170 МПа, а предел прочности — 1170-1370 МПа. Ясно, что такого наклепа можно достичь только при изготовлении таких видов изделий, как тонкий лист, лента, проволока.

Аустенитные нержавеющие стали являются немагнитными, что дает им преимущество во многих применениях.

Представителями аустенитных нержавеющих сталей являются стали 12Х18Н9 и 17Х18Н9, 12Х18Н10Т и 12Х18Н9Т, 08Х18Н10Т, 08Х18Н12Б, 03Х18Н11 по ГОСТ 5632-72.

Дисперсионно твердеющие нержавеющие стали

Эти стали называют также высокопрочными нержавеющими сталями. Дисперсионно твердеющие нержавеющие стали содержат алюминий, ниобий или тантал и получают свои свойства за счет закалки, деформационного упрочнения, упрочнения старением и мартенситного превращения. Сталь сначала нагревают и закаливают с превращением аустенита в мартенсит. Повторный нагрев вызывает выделение из мартенсита упрочняющих частиц, таких как NiAl3. Высокая прочность этих сталей достигается даже при низком содержании углерода.

К дисперсионно твердеющим сталям относятся стали 07Х16Н6, 09Х15Н8Ю, 08Х17Н5М3, 04Х25Н5М2, ХН40МДТЮ по ГОСТ 5632-72.

Какая марка стали лучше для банной печки

Непосредственное воздействие огня приводит к прогоранию стали. Конечно, можно попросту использовать металл толщиной 10 мм и более, но тогда придется подолгу протапливать парную, тратить большое количество топлива для прогрева. По причине использования толстостенных стальных листов, долговечная печь станет экономически невыгодной.

Задача, стоящая перед мастером – сделать конструкцию достаточно прочную, чтобы предотвратить деформацию, прогорание и одновременно имеющую хорошую теплопроводимость. В заводских условиях, для изготовления банных печей используется металл с высокой степенью жаропрочности.

Легированная сталь отличается от конструкционной стали следующими характеристиками:

  • Устойчивость к влаге – легированная сталь, применяемая при изготовлении печей для бани, нержавеющая. Отсутствует склонность к коррозии даже при интенсивном нагреве. Отечественная марка жаропрочной высоколегированной нержавеющей стали 08Х17Т. В некоторых источниках указывается на практически полную идентичность характеристик жаростойких сталей данного типа. Конструкционное железо не отличается коррозионной стойкостью, что приходится учитывать при расчете толщины стенок топки.
  • Время эксплуатации – срок службы печей из конструкционной стали, 3-4 года. AISI 430 приходит в негодность за 5-8 лет.
  • Возможность ремонтных работ – марки жаростойких сталей для изготовления дровяных банных печей, AISI 430 и 08Х17Т, имеют низкое содержание углерода, что делает возможным проведение сварочных работ. Конструкционное железо содержит соединения серы и фосфора, предающие ему хрупкость и ломкость.
  • Жаростойкость – марки жаропрочной стали для печи в баню, AISI 430 и 08Х17Т, выдерживают нагрев до 850°С без изменения структуры металла и его кристаллической решетки. При поднятии температуры до 600 °С, предел прочности остается в районе 145 Мпа. Образование окалины происходит только при разогреве до 8500°С. Металл в банной печи при интенсивной топке нагревается до температуры 450-550°С. У конструкционного материала, параметры жаростойкости меньше.

Расшифровка марок

Маркировка легированных сталей состоит из букв и цифр. В начале ставится двузначное число, которое характеризует количество углерода в сотых долях %. Далее следуют буквы русского алфавита, обозначающие определенный элемент:

  • Х – хром;
  • Н – никель,
  • Т – титан;
  • В – вольфрам;
  • Г – марганец;
  • М – молибден;
  • Д – медь.

После буквенного обозначения легирующего элемента в расшифровке идет число, обозначающее его содержание в нержавеющей стали, округленное до целого процента. Если такой цифры нет, то добавка в сплаве находится в пределах – 1-1,5 %.

Это интересно: Коэффициент теплопроводности меди: что такое теплопроводность. Какая теплопроводность у меди

Разновидности жаропрочных и жаростойких материалов по структурным критериям

Состояние внутренней структуры металлов определяет тип сталей и сплавов.

Выделяется ряд категорий жаропрочных стальных материалов, исходя из состояний внутренней структуры.

Аустенитный класс

Аустенитный класс формирует внутреннюю структуру благодаря большому процентному содержанию хрома и никеля. Получение стабильного аустенита, гранецентрированной кристаллической решетки железа, предполагает легирование стали никелем. Жаростойкость определяется хромовыми добавками.

Это интересно: Обозначение и изображение резьбы на чертеже согласно ГОСТ

Аустенитные сплавы — высоколегированные. Для целей легирования используются Nb (ниобий) и (Ti) титан для увеличения устойчивости к коррозии. Эта характеристика позволяет отнести их к группе стабилизированных. Коррозионностойкие жаропрочные стали с относятся к труднообрабатываемым металлам.

Когда температуры повышаются до значений, близких к 1000 градусам С. и длительно поддерживаются, аустенитная нержавеющая сталь сохраняет стойкость к образованию слоя окалины, сохраняя качество жаростойких материалов.

Часто встречаются на производстве сплавы аустенитного типа, принадлежащие к дисперсионно–твердеющему подклассу. Качественные характеристики могут улучшаться путем добавления различных элементов: карбидных, интерметаллических упрочнителей. Эти элементы обеспечивают деформационно-термическое упрочнение благодаря усилению аустенитной матрицы с помощью дисперсионного твердения.

Карбидообразующие элементы: ванадий-V, ниобий-Nb, вольфрам-W, молибден-Mo.

Интерметаллиды получаются благодаря дополнительным добавкам хрома–Cr, никеля-Ni, и титана–Ti.

Структура аустенитов

Жаропрочные аустенитные различаются по типам структуры. Она может быть

  • Гомогенной. Материал с такой структурой не проходит термообработку для упрочнения, в нем мало углерода и большой процент легирующих компонентов. Это обусловливает хорошую стойкость к ползучести. Применяются в температурной среде ниже 500 градусов.
  • Гетерогенной. В таком материале, прошедшем термоупрочнение, получаются карбонитридные и интерметаллидные фазы. Это позволяет повысить температуру использования под нагрузками напряжения до 700 градусов..

Материалы с никелевыми и кобальтовыми присадками подвергаются эксплуатационным воздействиям при терморежиме до 900 градусов. Сохраняют стабильность структуры долгое время.

Нихромы, в которых никеля больше 55%, отличаются и жаропрочностью, и качествами жаростойкости.

Тугоплавкие металлы: вольфрам, ниобий, ванадий обеспечивают устойчивость металлов, когда термический режим приближается к 1500 гр. С.

Молибденовые сплавы с дополнительной защитой долгое время сохраняют рабочие свойства в терморежиме 1700 гр.

Марки аустенитного ряда дисперсионно-твердеющие Маркировка сплавов аустенитного ряда гомогенных
Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М 1Х14Н16Б, 1Х14Н18В2Б, Х18Н12Т, Х18Н10Т, Х23Н18, Х25Н20С2, Х25Н16Г7АР
Из металлов этого подкласса производят турбинные конструкции, клапаны двигателей автотранспорта, арматурных конструкций Гомогенные виды идут на изготовление трубопрокатной продукции, деталей печей, агрегатов, функционирующих под давлением.
Х12Н20Т3Р идет на производство турбинных дисков, кольцевых компонентов, крепежа, функционирующих в температурном режиме менее 700 гр.
4Х14Н14В2М участвует в производстве арматуры, крепежа и поковок для долгого срока эксплуатации при термическом режиме 650 градусов
Х25Н20С2 участвует в производстве печей для температурных нагрузок до 1100 градусов
Из Х25Н16Г7АР производят различные металлические полуфабрикаты: лист, проволока, готовые детали для функционального использования при 950 гр. при умеренных нагрузках.

Х18Н12Т идет на изготовление деталей и компонентов для работы при терморежиме до 600 гр. в агрессивных средах.

Аустенитно-ферритный класс

Материалы, содержащие смесь аустенитных и ферритных фаз, характеризуются особой жаропрочностью. По своим параметрам они превосходят даже высокохромистые железосодержащие материалы. Объяснение этого явления кроется в особо стабильной матричной структуре. Это предполагает возможность применения при терморежиме 1150 градусов.

Маркировка стали ферритного ряда: Х23Н13, Х20Н14С2 и 0Х20Н14С2
Х23Н13 идет на изготовление пирометрических трубок. Х20Н14С2 и 0Х20Н14С2 идут в производство жаропрочных труб, печных конвейеров, емкостей для цементации.

Мартенситный класс

Методом, который превращает один вид стального материала в другой, является закаливание, за которым следует отпуск. Итог процесса – перестроение кристаллической решетки и повышение твердости. Однако возрастает хрупкость.

Технология отжига проходит при температурах около 1200 градусов на протяжении нескольких часов. Затем материалу дают остыть, и это занимает также несколько часов. Такая процедура приводит к повышению гибкости металла, хотя приходится пожертвовать некоторым уровнем твердости. Если применяется метод двойной закалки, то она проходит в два этапа . Первый предполагает нормализацию твердого раствора материала с нагреванием до 1200 градусов. Второй этап предполагает тот же процесс, но с нагревом до 1000 градусов. Такая технология обеспечивает рост пластичности металла и увеличивает его жаропрочность.

Мартенситы характеризуют такие марки сплавов:
Х5, 3Х13Н7С2 , 40Х10С2М , 4Х9С2, 1Х8ВФ.
Х5 используется в трубном производстве, трубы выдерживают режим эксплуатации до 650 гр. С.
40Х10С2М идет на изготовление клапанов авиадвигателей, двигателей для дизельного автотранспорта, крепежа при температурах до 500 градусов.

3Х13Н7С2 и 4Х9С2 могут подвергаться нагреву порядка 900 гр. С. Это обуславливает их пригодность для производства двигательных клапанов.

1Х8ВФ рассчитана на температурный режим ниже 500 гр. С., но на длительную эксплуатацию под нагрузками. Эта марка подтвердила свою эффективность в изготовлении паровых турбин.

Перлитный класс

Перлитные жаропрочные стальные материалы относятся к категории низколегированных. Стали содержащие в виде присадок хром и молибден ориентированы на работу при температуре 450-550 гр. С., содержащие, помимо Cr и Mo еще и ванадий, нацелены на рабочий режим при температуре 550-600 гр. С.

Легирование хромом влияет на жаростойкость материалов в сторону повышения этой характеристики, также усиливается сопротивляемость окислительным процессам. Добавки молибдена увеличивают прочностные характеристики при большом нагреве материалов.

Ванадий, объединяясь с углеродом, создает повышение прочностных характеристик стальных материалов карбидами с высокодисперсными качествами.

Технология нормализации металлов улучшает и оптимизирует механические свойства сплавов. Технология закаливания и следующего за ней температурного отпуска выполняет ту же функцию. Получается структурная матрица, в которой присутствует дисперсная феррито карбидная фактура.

К перлитным разновидностям принадлежат марки стали:
12МХ, 15ХМ, 20ХМЛ, 12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 12Х2МФСР
Из 20ХМЛ производят шестерни, втулки крестовины, цилиндры, другие узлы и детали для работы при 500 гр. С.
12Х1МФ — производство труб пароперегревателей, трубопроводов и коллекторов высокого давления.

15Х1М1Ф идет на производство установок высокого давления, функционирующих при режиме температур до 585 гр. С.

Ферритный класс

Материалы с ферритной структурой имеют в своем составе от 25 до 33 % хрома. Получаются с помощью методов отжига и термообработки, из-за этого в них возникает мелкозернистая структура. Когда происходит повышение температурных показателей до 850 градусов, увеличивается хрупкость.

Маркировки сталей ферритного ряда:
1Х12СЮ, Х17, 0Х17Т, Х18СЮ, Х25Т и Х28
Оправдано использование сталей этого ряда для изготовления разнообразных деталей для машиностроения.
0Х17Т зарекомендовал себя в производстве изделий для работы в окислительных средах, таких как трубы и теплообменники

Из Х18СЮ производятся трубы пиролизных установок, аппаратура.

Х25Т участвует в производстве сварных конструкций с эксплуатационной температурой до 1100 градусов, труб для перекачивания агрессивных сред, теплообменников.

Мартенситно-ферритный класс

Этот тип стали имеет в своем составе 10-14% хрома, легируется V, Mo, W.

Марки сплавов этого ряда:
Х6СЮ, 1Х13, 1Х11МФ, 1Х12В2МФ, 1Х12ВНМФ, 2Х12ВМБФР
Х6СЮ применяется в производстве компонентов котельных установок и трубопроводов.
1Х11МФ работает в виде лопаток турбин, из него производят поковки для эксплуатационных температур до 560 гр. С.

1Х12ВНМФ идет на производство лопаток и крепежа турбин, которые подвергаются длительным нагрузкам в температурных пределах до 580 градусов.

Источник