- Свойства олова
- Характеристики олова
- Виды олова
- Олово и сферы его применения
- Оглавление
- Основные сведения об олове
- История открытия олова
- Физические и механические свойства олова
- Химические свойства олова
- Марки олова и сплавов
- Достоинства и недостатки
- Применение олова
- Продукция из олова
- ОЛОВО
- Историческая справка.
- Бронза.
- Физические свойства.
- Химические свойства.
- Применение.
- Сплавы.
- Покрытия из олова и его сплавов.
- Соединения.
Свойства олова
Олово представляет собой металл с характерным серебристо-белым цветом. В периодической системе химических элементов имеет 50 номер и обозначается в химической номенклатуре символом Sn (с латинского Stannum). Олово входит в группу легких металлов. В нормальных условиях существования металл проявляет свою пластичность, а также легко поддается ковке и плавке.
Олово является достаточно редким металлом, который встречается только в рассеянном состоянии. Среди перечня всех содержащихся в земной коре химических элементов, олово располагается на 47 месте. Основным материалом, из которого добывается олово, являются руды и пески. Максимальное количество содержания олова найдено в кассетирите ,минерале, доля которого достаточно велика в песках, находящихся на океанском дне. Содержание металла в кассетирите достигает 80%. Также достаточное для добычи содержание олова находится и в оловянном колчедане. Однако, его существование в природе – настоящая редкость.
Характеристики олова
Свойства олова заключаются в следующем. Это твердый металл, который при температуре 20 0 С имеет плотность, равную 7,3 г/см 3 , когда олово переходит в жидкое состояние, что возможно только при температуре плавления, его плотность составляет 6,98 г/см 3 . Плавится металл при 231,9 0 С, закипает при 2600 0 С. Т.е. предельной температурой, при которой металл способен сохранять свое твердое состояние, является 231 0 С. Стоит отметить, что металл достаточно гибкий в охлажденном состоянии. Если воздействовать элемент незначительным повышением температуры, то при нажатии металл легко поддается деформации, подобно пластилину.
Олово имеет коэффициент линейного расширения при температуре в диапазоне от 20 0 С до 100 0 С, который составляет 22,4*10 -6 К -1 . Металл имеет удельную теплоемкость, которая при 20 0 С равняется 226 Дж/(кг*К), а в жидком состоянии – 268 Дж/(кг*К).
При температуре, равной 20 0 С, теплопроводность олова составляет 65,8 Вт(м*К), его удельное электросопротивление и удельная электропроводность при той же температуре составляют 0,115 мкОм*м и 8,69 МСм/м, соответственно.
Как уже говорилось, металл является достаточно мягким и без труда поддающимся резанию ножом. Его твердость по Бринеллю составляет 50 МПа. Относительное удлинение металла равняется 80%. Литье осуществляется, когда температура металла достигает 260-300 0 С.
Олово имеет молекулярную массу 50, в связи, с чем считается легким металлом. Вес металла практически такой же, как и у алюминия.
На поверхности металла находится оксид олова, который является отличной защитной пленкой, призванной предотвратить появление на нем коррозии. Данное свойство присуще металлу даже во влажном воздухе при температуре 100 0 С. Олово не обладает химической стойкостью, легко реагируя с азотной и серной кислотами. Также вступает в реакцию и с галогенами.
Характеристика | Значение | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Свойства атома | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Название, символ, номер | О́лово / Stannum (Sn), 50 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Свойство | Значение |
---|---|
Атомный номер | 50 |
Атомная масса, а.е.м | 118,7 |
Радиус атома, пм | 162 |
Плотность, г/см³ | 7,31 |
Теплопроводность, Вт/(м·K) | 66,8 |
Температура плавления, °С | 231,9 |
Температура кипения, °С | 2620 |
Теплота плавления, кДж/моль | 7,07 |
Теплота испарения, кДж/моль | 296 |
Молярный объем, см³/моль | 16,3 |
Группа металлов | Легкий металл |
Химические свойства олова
Свойство | Значение |
---|---|
Ковалентный радиус, пм | 141 |
Радиус иона, пм | (+4e) 71 (+2) 93 |
Электроотрицательность (по Полингу) | 1,96 |
Электродный потенциал | -0,136 |
Степени окисления | +4, +2 |
Энергия ионизации, кДж/моль (эВ) | 708,2 (7,34) |
Марки олова и сплавов
На сегодняшний день в промышленности используется олово следующих марок:
- ОВЧ-000 – практически чистое олово, которое производится в виде прутков или чушки (содержимое Sn в такой продукции достигает 99,999%);
- 01ПЧ, 01 – сплавы, которые также причислены к категории чистого олова, а содержимое примесей в них не превышает 0,085% и 0,1%, соответственно (выпускается такое олово в виде чушки, проволоки и прутков);
- 02 – чистое олово с максимальным процентным содержанием примесей – не более 0,435%;
- 03 – олово с примесью свинца, процентное содержание которого не превышает 1%;
- 04 – Sn с максимальным содержанием примесей (допустимое содержание посторонних элементов – 3,51%).
Достоинства и недостатки
Преимущества олова заключаются в следующих характеристиках металла:
- в высокой коррозионной стойкости, а также в невосприимчивости к воздействию солей и целого ряда органических кислот;
- в неспособности вступать в реакцию с серой, которая может содержаться в других материалах (это позволяет сочетать олово и, к примеру, пластик в одних и тех же изделиях);
- в отсутствии токсичности – качество, позволяющее использовать Sn в пищевой промышленности.
Олово характеризуется следующими недостатками:
- низкая температура перехода в жидкое состояние;
- подверженность «оловянной чуме».
Применение олова
Можно выделить несколько ключевых направлений использования олова. Благодаря отсутствию токсичности, а также благодаря устойчивости к воздействию агрессивных химических соединений из олова изготавливают изделия и оборудование, напрямую контактирующее с пищей. Также на основе олова формируются покрытия медных электрических проводников. Это позволяет защитить медь от негативного воздействия серы, которая содержится в пластике наружной изоляции.
Небывалое распространение получило олово в промышленных отраслях, связанных с производством электроники. Пайка деталей и электрических схем в большинстве случаев производится с применением Sn.
Существует огромное количество сплавов, в состав которых неизбежно входит олово. Это всевозможные баббиты, бронзовые сплавы, а также другие материалы, с которыми мы практически повседневно сталкиваемся в обычной жизни.
Продукция из олова
Полуфабрикаты из олова поступают на рынок в виде проволоки, прутков или чушки. Эта продукция используется в производстве сплавов, а также разнообразных деталей или покрытий.
Аноды из олова применяют для лужения поверхностей, изготовленных из других материалов.
Система менеджмента качества производств сертифицирована на соответствие международному стандарту качества ISO 9001: 2015
Источник
ОЛОВО
ОЛОВО, Sn (от лат. stannum, что первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67% Sn; к 4 в. этим словом стали называть олово), химический элемент IVB подгруппы (включающей C, Si, Ge, Sn и Pb) периодической системы элементов. Олово – относительно мягкий металл, используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами.
Главные промышленные применения олова – в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Олово образует различные соединения, многие из которых находят промышленное применение. Наиболее экономически важный оловосодержащий минерал – касситерит (оксид олова). Мировые месторождения касситерита разрабатывают в Юго-Восточной Азии, в основном в Индонезии, Малайзии и Таиланде. Другие важные месторождения касситерита находятся в Южной Америке (Бразилия и Боливия), Китае и Австралии. См. также ОЛОВА ПРОИЗВОДСТВО.
Историческая справка.
Олово начали применять, вероятно, еще во времена Гомера и Моисея. Открытие его было связано, скорее всего, со случайным восстановлением наносного касситерита (оловянного камня); наносные отложения встречаются на поверхности или близко к ней, и оловянные руды намного легче восстанавливаются, чем руды других металлов. Древние бритты были хорошо знакомы с оловом: в Корнуолле на юго-западе Англии были обнаружены древние горны со шлаком. Металл был, очевидно, малодоступен и дорог, т.к. оловянные предметы редко встречаются среди римских и греческих древностей, хотя об олове говорится в Библии в Четвертой книге Моисеевой (Числа), а слово касситерит, которое и сегодня используется для обозначения оксидной оловянной руды, – греческого происхождения. Малакка и Восточная Индия упоминаются как источники олова в арабской литературе 8–9 вв. и различными авторами в 16 в. в связи с Великими географическими открытиями. История оловянных разработок в Саксонии и Богемии относится еще к 12 в., но в 17 в. 30-летняя война (1618–1648) разрушила эту промышленность. Производство впоследствии возобновили, но вскоре оно пришло в упадок из-за открытия богатых месторождений в Америке.
Бронза.
Задолго до того как научились добывать олово в чистом виде, был известен сплав олова с медью – бронза, который получали, видимо, уже в 2500–2000 до н.э. Олово в рудах часто встречается вместе с медью, так что при плавке меди в Британии, Богемии, Китае и на юге Испании образовывалась не чистая медь, а ее сплав с некоторым количеством олова. Ранние медные плотничные инструменты (долото, тесло и др.) из Ирландии содержали до 1% Sn. В Египте медная утварь 12-й династии (2000 до н.э.) содержала до 2% Sn, по-видимому, как случайную примесь. Первобытная практика выплавки меди основывалась на использовании смеси медных и оловянных руд, в результате чего и получалась бронза, содержащая до 22% Sn.
СВОЙСТВА b -ОЛОВА | |
Атомный номер | 50 |
Атомная масса | 118,710 |
Изотопы | |
стабильные | 112, 114–120, 122, 124 |
нестабильные | 108–111, 113, 121, 123, 125–127 |
Температура плавления, °С | 231,9 |
Температура кипения, °С | 2625 |
Плотность, г/см 3 | 7,29 |
Твердость (по Бринеллю) | 3,9 |
Содержание в земной коре, % (масс.) | 0,0004 |
Степени окисления | +2, +4 |
Физические свойства.
Олово – мягкий серебристо-белый пластичный металл (может быть прокатан в очень тонкую фольгу – станиоль) с невысокой температурой плавления (легко выплавляется из руд), но высокой температурой кипения. Олово имеет две аллотропные модификации: a-Sn (серое олово) с гранецентрированной кубической кристаллической решеткой и b-Sn (обычное белое олово) с объемноцентрированной тетрагональной кристаллической решеткой. Фазовый переход b ® a ускоряется при низких температурах (–30° С) и в присутствии зародышей кристаллов серого олова; известны случаи, когда оловянные изделия на морозе рассыпались в серый порошок («оловянная чума»), но это превращение даже при очень низких температурах резко тормозится наличием мельчайших примесей и поэтому редко встречается, представляя скорее научный, чем практический интерес. См. также АЛЛОТРОПИЯ; ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ.
Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется. Однако оно легко образует сплавы с большинством других черных и цветных металлов. Оловосодержащие сплавы обладают прекрасными антифрикционными свойствами в присутствии смазки, поэтому широко используются как материал подшипников.
Химические свойства.
При комнатной температуре олово химически инертно к кислороду и воде. На воздухе олово постепенно покрывается защитной оксидной пленкой, которая повышает его коррозионную стойкость. С химической инертностью олова и его оксидной пленки в обычных условиях связано использование его в покрытии жестяной тары для продуктов питания, прежде всего – консервных банок. Олово легко наносится на сталь и продукты его коррозии безвредны. В соединениях олово проявляет две степени окисления: +2 и +4, причем соединения олова(II) в большинстве своем относительно нестабильны в разбавленных водных растворах и окисляются до соединений олова(IV) (их используют иногда как восстановители, например SnCl2). Разбавленные соляная и серная кислоты действуют на олово очень медленно, а концентрированные, особенно при нагревании, растворяют его, причем в соляной кислоте получается хлорид олова(II), а в серной – сульфат олова(IV). С азотной кислотой олово реагирует тем интенсивнее, чем выше концентрация и температура: в разбавленной HNO3 образуется растворимый нитрат олова(II), а в концентрированной HNO3 – нерастворимая b-оловянная кислота H2SnO3. Концентрированные щелочи растворяют олово с образованием станнитов – солей оловянистой кислоты H2SnO2; в растворах станниты существуют в гидроксоформе, например Na2[Sn(OH)4]. Наибольшее промышленное значение соединения олова(II) имеют в производстве гальванических покрытий. Соединения олова(IV) находят обширное промышленное применение.
Оксиды олова амфотерны, проявляют и кислотные, и основные свойства. Оксид олова(IV) встречается в природе в виде минерала касситерита, а чистый SnO2 получают из чистого металла; диоксид олова SnO2 применяется для приготовления белых глазурей и эмалей. Из SnO2 при взаимодействии со щелочами получают станнаты – соли оловянной кислоты, наиболее важные из которых – станнаты калия и натрия; растворы станнатов находят широкое применение как электролиты для осаждения олова и его сплавов. SnCl4 – тетрахлорид олова, исходное соединение для многих синтезов других соединений олова, включая и оловоорганические.
Применение.
В современном мире более трети добываемого олова расходуется на изготовление пищевой жести и емкостей для напитков. Жесть в основном состоит из стали, но имеет покрытие из олова обычно толщиной менее 0,4 мкм.
Сплавы.
Одна треть олова идет на изготовление припоев. Припои – это сплавы олова в основном со свинцом в разных пропорциях в зависимости от назначения. Сплав, содержащий 62% Sn и 38% Pb, называется эвтектическим и имеет самую низкую температуру плавления среди сплавов системы Sn – Pb. Он входит в составы, используемые в электронике и электротехнике. Другие свинцово-оловянные сплавы, например 30% Sn + 70% Pb, имеющие широкую область затвердевания, используются для пайки трубопроводов и как присадочный материал. Применяются и оловянные припои без свинца. Сплавы олова с сурьмой и медью используются как антифрикционные сплавы (баббиты, бронзы) в технологии подшипников для различных механизмов. Современные оловянно-свинцовые сплавы содержат 90–97% Sn и небольшие добавки меди и сурьмы для увеличения твердости и прочности. В отличие от ранних и средневековых свинецсодержащих сплавов, современная посуда из cплавов олова безопасна для использования.
Покрытия из олова и его сплавов.
Олово легко образует сплавы со многими металлами. Оловянные покрытия имеют хорошее сцепление с основой, обеспечивают хорошую коррозионную защиту и красивый внешний вид. Оловянные и оловянно-свинцовые покрытия можно наносить, погружая специально приготовленный предмет в ванну с расплавом, однако большинство оловянных покрытий и сплавов олова со свинцом, медью, никелем, цинком и кобальтом осаждают электролитически из водных растворов. Наличие большого диапазона составов для покрытий из олова и его сплавов позволяет решать многообразные задачи промышленного и декоративного характера.
Соединения.
Олово образует различные химические соединения, многие из которых находят важное промышленное применение. Кроме многочисленных неорганических соединений, атом олова способен к образованию химической связи с углеродом, что позволяет получать металлоорганические соединения, известные как оловоорганические (см. также МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ). Водные растворы хлоридов, сульфатов и фтороборатов олова служат электролитами для осаждения олова и его сплавов. Оксид олова применяют в составе глазури для керамики; он придает глазури непрозрачность и служит красящим пигментом. Оксид олова можно также осаждать из растворов в виде тонкой пленки на различных изделиях, что придает прочность стеклянным изделиям (или уменьшает вес сосудов, сохраняя их прочность). Введение станната цинка и других производных олова в пластические и синтетические материалы уменьшает их возгораемость и препятствует образованию токсичного дыма, и эта область применения становится важнейшей для соединений олова. Огромное количество оловоорганических соединений расходуется в качестве стабилизаторов поливинилхлорида – вещества, используемого для изготовления тары, трубопроводов, прозрачного кровельного материала, оконных рам, водостоков и др. Другие оловоорганические соединения используются как сельскохозяйственные химикаты, для изготовления красок и консервации древесины.
Спиваковский В.Б. Аналитическая химия олова. М., 1975
Большаков К.А., Федоров П.И. Химия и технология малых металлов. М., 1984
Источник
detector