Гидроксид олова с чем реагирует

Гидроксид олова

Гидроксид олова – это соединение неорганическое по своей природе. Химическая формула данного соединения — Sn(OH)2. По своим физическим свойствам гидроокись олова представляет собой осадок белого цвета гелевидной консистенции.

В химических опытах стереохимический состав гидрата не выделен. Соединение устойчиво сохраняет свои свойства при показателе pH от 2,5 до 10,5. В химических процессах оно проявляет амфотерные свойства, растворяясь как в кислотах, так и щелочах. Гидроокись слабо растворяется в воде.

Химические свойства гидроокиси олова

Это химическое соединение легко отделяет молекулы воды при нагревании до температуры от 60 до 120 градусов.

Получают соединение гидроокиси одновалентного олова (I) при помощи воздействия щелочей на соли двухвалентного олова (II). В процессе этой реакции гидроксид выпадает в осадок.

Гидроокись двухвалентного олова (II) легко вступает в реакцию с кислотами и щелочами. При взаимодействии с щелочью образует гидрооксиданты. Гидроокись проявляет амфотерные химические свойства.

Гидроокись четырехвалентного олова (IV) известна еще под названием оловянной кислоты. Эта кислота может существовать в виде двух модификаций:

  • сс-оловяной кислоты;
  • р-оловяной кислоты.

Получают оловянные кислоты в процессе химического воздействия водного раствора аммиака на предварительно растворенное соединение хлорида олова.

Из-за своей склонности к переходу в соединения четырехвалентного олова, гидроокись выступает в роли сильного восстановителя в химических процессах. На этом свойстве основано их техническое использование в процессах печати протравным методом, а также в процессе кубового крашения.

Источник

Олово: степени окисления и реакции с ним

Химические свойства олова

Олово – это легкий металл с атомным номером 50, который находится в 14-й группе периодической системы элементов. Этот элемент был известен еще в древности и считался одним из самых редких и дорогих металлов, поэтому изделия из олова могли позволить себе самые богатые жители Римской Империи и Древней Греции. Из олова изготавливали специальную бронзу, которой пользовались еще в третьем тысячелетии до нашей эры. Тогда бронза была самым прочным и популярным сплавом, а олово служило одной из примесей и использовалось более двух тысяч лет.

На латыни этот металл называли словом «stan­num», что означает стойкость и прочность, однако таким названием ранее обозначался сплав свинца и серебра. Только в IV веке этим словом начали называть само олово. Само же название «олово» имеет множество версий происхождения. В Древнем Риме сосуды для вина делались из свинца. Можно предположить, что оловом называли материал свинец, из которого изготавливали сосуды для хранения напитка оловина, употребляемого древними славянами.

В природе этот металл встречается редко, по распространенности в земной коре олово занимает всего лишь 47-е место и добывается из касситерита, так называемого оловянного камня, который содержит около 80 процентов этого металла.

Читайте также:  Кислота для пайки оловом как пользоваться

Применение в промышленности

Так как олово является нетоксичным и весьма прочным металлом, он применяется в сплавах с другими металлами. По большей части его используют для изготовления белой жести, которая применяется в производстве банок для консервов, припоев в электронике, а также для изготовления бронзы.

Физические свойства олова

Этот элемент представляет собой металл белого цвета с серебристым отблеском.

Если нагреть олово, можно услышать потрескивание. Этот звук обусловлен трением кристалликов друг о друга. Также характерный хруст появится, если кусок олова просто согнуть.

Олово весьма пластично и ковко. В классических условиях этот элемент существует в виде «белого олова», которое может модифицироваться в зависимости от температуры. Например, на морозе белое олово превратится в серое и будет иметь структуру, схожую со структурой алмаза. Кстати, серое олово очень хрупкое и буквально на глазах рассыпается в порошок. В связи с этим в истории есть терминология «оловянная чума».

Раньше люди не знали о таком свойстве олова, поэтому из него изготавливались пуговицы и кружки для солдат, а также прочие полезные вещи, которые после недолгого времени на морозе превращались в порошок. Некоторые историки считают, что именно из-за этого свойства олова снизилась боеспособность армии Наполеона.

Получение олова

Основным способом получения олова является восстановление металла из руды, содержащей оксид олова(IV) с помощью угля, алюминия или цинка.

Особо чистое олово получают электрохимическим рафинированием или методом зонной плавки.

Химические свойства олова

При комнатной температуре олово довольно устойчиво к воздействию воздуха или воды. Это объясняется тем, что на поверхности металла возникает тонкая оксидная пленка.

На воздухе олово начинает окисляться только при температуре свыше 150 °С:

Если олово нагреть, этот элемент будет реагировать с большинством неметаллов, образуя соединения со степенью окисления +4 (она более характерна для этого элемента):

Взаимодействие олова и концентрированной соляной кислоты протекает довольно медленно:

Sn + 4HCl → H₂[SnCl₄] + H₂

С концентрированной серной кислотой олово реагирует очень медленно, тогда как с разбавленной в реакцию не вступает вообще.

Очень интересна реакция олова с азотной кислотой, которая зависит от концентрации раствора. Реакция протекает с образованием оловянной кислоты, H₂S­nO₃, которая представляет собой белый аморфный порошок:

3Sn + 4H­NO₃ + nH₂O = 3H₂S­nO₃·nH₂O + 4NO

Если же олово смешать с разбавленной азотной кислотой, этот элемент будет проявлять металлические свойства с образованием нитрата олова:

4Sn + 10H­NO₃ = 4Sn(NO₃)₂ + NH₄NO₃ + 3H₂O

Нагретое олово нагреть может реагировать со щелочами с выделением водорода:

Sn + 2KOH + 4H₂O = K₂[Sn(OH)₆] + 2H₂

Здесь вы найдете безопасные и очень красивые эксперименты с оловом.

Степени окисления олова

В простом состоянии степень окисления олова равняется нулю. Также Sn может иметь степень окисления +2: оксид олова(II) SnO, хлорид олова(II) SnCl₂, гидроксид олова(II) Sn(OH)₂. Степень окисления +4 наиболее характерна для оксида олова(IV) SnO₂, галогенидах(IV), например хлорид SnCl₄, сульфид олова(IV) SnS₂, нитрид олова(IV) Sn₃N₄.

Читайте также:  Линия по производству олова

Источник

Гидроксид олова II

Гидроксид олова II
Систематическое
наименование
Гидроксид олова
Традиционные названия Гидроокись олова
Хим. формула Sn(OH)2
Рац. формула Sn(OH)2
Состояние гелевидный белый осадок
Молярная масса 152,72 г/моль
Энтальпия
• образования −561 кДж/моль
Рег. номер CAS 12026-24-3
Рег. номер EINECS 234-710-9
InChI
ChemSpider 24769728
Токсичность нетоксичен
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Гидроксид олова II — неорганическое соединение, гидроксид олова формулой Sn(OH)2, гелевидный белый осадок, плохо растворимый в воде, проявляет амфотерные свойства.

Содержание

Получение

  • Осаждение щелочами из раствора солей двухвалентного олова:

SnCl2 + 2 NaOH → Sn(OH)2↓ + 2 NaCl

Физические свойства

Гидроксид олова II образует гелевидный белый осадок, плохо растворимый в воде, устойчивый в интервале pH 2,5÷10,5.

Из раствора осаждается в виде гидрата m SnO•n H2O, соединение стехиометрического состава не выделено.

Источник

Соединения олова

5.1 Соединения олова -4 [4]

Гидрид олова – станнан SnН4 – бесцветный ядовитый газ, термодинамически неустойчив, при нормальных условиях постепенно разлагается с образованием оловянного зеркала: SnH4 → 2Н2 + Sn

Аналитическая реакция SnH4 + O2 → SnO2 + 2H2O + Q (васильковый цвет) [5]

5.2 Соединения олова +2

· SnO – черного цвета, мало растворим в воде. Амфотерен с преобладанием основных свойств.

· Диспропорционируют при нагревании:

· Растворим в концентрированных и разбавленных кислотах:

· Растворим в концентрированных растворах щелочей и их расплавах:

· Окисляются кислородом воздуха:

· Sn(OH)2 – белый студенистый осадок, плохо растворим в воде. Амфотерен, взаимодействует как с кислотами, так и с щелочами:

· При нагревании легко теряет воду:

Sn 2+ + H2O ↔ SnOH + + H +

· Определение Sn 2+ или Bi 3+ :

5.3 Соединения олова +4

Оксид олова (IV) белое тугоплавкое вещество. Получают сжиганием олова при высоких температурах. Амфотерен, но химически малоактивен, лучше реагирует при сплавлении. [6, с. 278 — 280]

Гидроксид олова (IV) амфотерен, но кислотные свойства у него преобладают, реагирует как с концентрированными кислотами, так и с щелочами:

SnCl2 – белый порошок, плавится, кипит без разложения. (как сильный восстановитель)

· Обесцвечивание раствора перманганата калия H + среда:

· Обесцвечивание бромной воды:

SnCl2 + H2O ↔ HCl + SnOHCl [6, с. 292]

SnCl4 – галоген – ангидрид, тяжелая бесцветная жидкость, при взаимодействии с H2O – гидролиз. [4]

Тетрагалогениды также взаимодействуют с основными галогенидами:

SnCl4 – кислота Льюиса. Как катализатор в органической химии.

SnS – тёмные кристаллы, хороший восстановитель.

E°Sn 4+ /Sn 2+ = +0, 15 В

Сульфид олова (II) не растворяется в сульфидах щелочных металлов и аммония, но полисульфиды аммония и щелочных металлов растворяют его с образованием тиостаннатов: [7, с. 361]

SnS2 – желтые кристаллы, в воде и кислотах не растворим.

5.6 Оловянные кислоты [8]

α – оловянная кислота H2SnO3•x H2O при хранении превращается в β – оловянную кислоту, а после в SnO2

· Реакция с кислотой:

· Реакция с щелочью:

Получение α – оловянной кислоты:

β – оловянная кислота H2SnO3 плохо растворяется в кислотах и щелочах. Не растворяется в воде.

· Реакция с концентрированной щелочью:

Получение β – оловянной кислоты:

· Получают растворением металлического олова в горячей концентрированной азотной кислоте с последующим разбавлением продуктов реакции большим количеством холодной воды:

· Осаждение раствора хлорида олова (IV) аммиаком:

5.7 Координационные соединения [4]

Разлагается при нагревании:

Реакция с щелочами:

Реакция с концентрированными щелочами:

Реакция с сероводородом:

Получение комплексных соединений:

· Растворение олова в царской водке:5

· Растворение хлорида олова в концентрированной соляной кислоте:

Источник

Гидроксид олова (II)

белый, аморфный порошок

Структурная формула
Общий
Фамилия Гидроксид олова (II)
Другие названия
Внешние идентификаторы / базы данных
Количество CAS 12026-24-3
Номер ЕС 234-710-9
ECHA InfoCard 100 031 542
Викиданные Q115740
характеристики
Молярная масса 152,716 г моль -1
Физическое состояние
Инструкции по технике безопасности
Маркировка опасности GHS
нет пиктограмм GHS
H- и P-фразы ЧАС: нет H-фраз
П: нет P-фраз
Насколько это возможно и общепринято, используются единицы СИ . Если не указано иное, приведенные данные относятся к стандартным условиям .

Гидроксид олова (II) представляет собой химическое соединение из группы гидроксидов с оловом на уровне окисления II.

Оглавление

Извлечение и представление

Когда разбавленный гидроксид щелочного металла добавляют к растворам соли олова (II), образуется белый осадок, который плохо растворяется в воде. Уравнение образования чистого гидроксида выглядит следующим образом:

С. п С. л 2 + 2 N а О ЧАС ⟶ С. п ( О ЧАС ) 2 ↓ + 2 N а С. л <\ Displaystyle \ mathrm \ + \ 2 \ NaOH \ longrightarrow \ \ downarrow> \ + \ 2 \ NaCl>>

Подобно свинца (II) , гидроксид , однако, Sn (ОН) 2 являются гидратированные оксиды с составом SnO · х 2 О (х характеристики

Если гидроксид олова (II) нагреть в бескислородной атмосфере, в результате дегидратации образуется сине-черный порошок, оксид олова (II) .

С. п ( О ЧАС ) 2 ⟶ С. п О + ЧАС 2 О <\ Displaystyle \ mathrm \ longrightarrow \ SnO + H_ <2>O>>

Как и все соединения олова (II), гидроксид также является восстановителем и легко окисляется до оксида олова (IV) .

Гидроксид олова (II) амфотерный , реагирует как с сильными кислотами, так и с сильными основаниями. С сильными кислотами он образует соли олова (II), а с сильными щелочами образует станнаты (II) , устаревшие, называемые станнитами. Последние, таким образом, являются солями кислоты олова (II), которая образует как три- [Sn (OH) 3 ] -, так и тетрагидроксотин (II) — [Sn (OH) 4 ] 2- соединения. Гидрат оксида растворяется в сильных основаниях с образованием станнатов щелочных металлов (II). Уравнение реакции с гидроксидом натрия с образованием станната натрия (II) выглядит следующим образом:

С. п ( О ЧАС ) 2 + 2 N а О ЧАС ⟶ N а 2 С. п ( О ЧАС ) 4-й <\ Displaystyle \ mathrm \ + \ 2 \ NaOH \ longrightarrow \ Na_ <2>Sn (OH) _ <4>>>

Источник

Adblock
detector