Главное квантовое число серебра

Строение атома серебра

Общие сведения о строении атома серебра

Относится к элементам d-семейства. Металл. Обозначение – Ag. Порядковый номер – 47. Относительная атомная масса – 107,868 а.е.м.

Электронное строение атома серебра

Атом серебра состоит из положительно заряженного ядра (+47), внутри которого есть 47 протонов и 61 нейтрон, а вокруг, по пяти орбитам движутся 42\7 электронов.

Рис.1. Схематическое строение атома серебра.

Распределение электронов по орбиталям выглядит следующим образом:

Валентными электронами атома серебра считаются электроны, расположенные на 4d— и 5s-орбиталях. Энергетическая диаграмма основного состояния принимает следующий вид:

Валентные электроны атома серебра можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), ml (магнитное) и s (спиновое):

Примеры решения задач

Задание Сколько атомных орбиталей d-подуровня заполнено у элемента с порядковым номером 23? Запишите его электронную формулу.
Решение На d-подуровне имеется пять орбиталей, на каждой из которых может одновременно находиться 2 электрона (в сумме 10). Элемент с порядковым номером 23 — это ванадий (V). Запишем электронную конфигурацию его атома в основном состоянии:

1s 2 2s 2 2p 6 3s 2 3p 6 3 d 3 4 s 2 .

В атоме ванадия заполнены 3 орбитали 3d-подуровня.

Ответ В атоме ванадия заполнены 3 орбитали 3d-подуровня.
Задание Почему марганец проявляет металлические свойства, а хлор – неметаллические? Ответ мотивируйте строением атомов этих элементов. Запишите их электронные формулы.
Ответ Запишем электронные конфигурации атомов хлора и марганца в основном состоянии:

Атому хлора до завершения внешнего энергетического уровня не хватает всего 1-го электрона, поэтому он обладает сильно выраженными неметаллическими свойствами. Марганцу для этих же целей потребуется гораздо больше электронов, поэтому, ему проще отдать свои валентные электроны при химическом взаимодействии, чем принять их – явный признак металлических свойств.

Источник

Электронная формула Серебра Ag (графическая схема строения атома)

Электронное строение атома серебра

Атом серебра состоит из положительно заряженного ядра (+47), внутри которого есть 47 протонов и 61 нейтрон, а вокруг, по пяти орбитам движутся 42\7 электронов.

Рис.1. Схематическое строение атома серебра.

Распределение электронов по орбиталям выглядит следующим образом:

Валентными электронами атома серебра считаются электроны, расположенные на 4d— и 5s-орбиталях. Энергетическая диаграмма основного состояния принимает следующий вид:

Валентные электроны атома серебра можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), ml (магнитное) и s (спиновое):

Видео

Степень окисления серебра

Атомы серебра в соединениях имеют степени окисления 3, 2, 1, 0.

Степень окисления — это условный заряд атома в соединении: связь в молекуле между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается, то степень окисления положительная.

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать. Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo. Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии ионизации для каждого последующего электрона.

Энергия ионизации Ag: Eo = 731 кДж/моль — Что такое ион читайте .

Источник

Серебро Ag

Серебро в таблице менделеева занимает 47 место, в 5 периоде.

Символ Ag
Номер 47
Атомный вес 107.8682000
Латинское название Argentum
Русское название Серебро

Как самостоятельно построить электронную конфигурацию? Ответ здесь

Электронная схема серебра

Ag: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 10

Короткая запись:
Ag: [Kr]5s 1 4d 10

Порядок заполнения оболочек атома серебра (Ag) электронами: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p.

На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ — до 6, на ‘d’ — до 10 и на ‘f’ до 14

Серебро имеет 47 электронов, заполним электронные оболочки в описанном выше порядке:

2 электрона на 1s-подуровне

2 электрона на 2s-подуровне

6 электронов на 2p-подуровне

2 электрона на 3s-подуровне

6 электронов на 3p-подуровне

2 электрона на 4s-подуровне

10 электронов на 3d-подуровне

6 электронов на 4p-подуровне

1 электрон на 5s-подуровне

10 электронов на 4d-подуровне

Степень окисления серебра

Атомы серебра в соединениях имеют степени окисления 3, 2, 1, 0.

Степень окисления — это условный заряд атома в соединении: связь в молекуле между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается, то степень окисления положительная.

Ионы серебра

Валентность Ag

Атомы серебра в соединениях проявляют валентность III, II, I.

Валентность серебра характеризует способность атома Ag к образованию хмических связей. Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании химических соединений называются валентными электронами. Более обширное определение валентности это:

Число химических связей, которыми данный атом соединён с другими атомами

Валентность не имеет знака.

Квантовые числа Ag

Квантовые числа определяются последним электроном в конфигурации, для атома Ag эти числа имеют значение N = 4, L = 2, Ml = -2, Ms = ½

Видео заполнения электронной конфигурации (gif):

Результат:

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать. Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo. Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии ионизации для каждого последующего электрона.

Перейти к другим элементам таблицы менделеева

Источник

Серебро Ag

Серебро в таблице менделеева занимает 47 место, в 5 периоде.

Символ Ag
Номер 47
Атомный вес 107.8682000
Латинское название Argentum
Русское название Серебро

Как самостоятельно построить электронную конфигурацию? Ответ здесь

Электронная схема серебра

Ag: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 10

Короткая запись:
Ag: [Kr]5s 1 4d 10

Порядок заполнения оболочек атома серебра (Ag) электронами: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p.

На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ — до 6, на ‘d’ — до 10 и на ‘f’ до 14

Серебро имеет 47 электронов, заполним электронные оболочки в описанном выше порядке:

2 электрона на 1s-подуровне

2 электрона на 2s-подуровне

6 электронов на 2p-подуровне

2 электрона на 3s-подуровне

6 электронов на 3p-подуровне

2 электрона на 4s-подуровне

10 электронов на 3d-подуровне

6 электронов на 4p-подуровне

1 электрон на 5s-подуровне

10 электронов на 4d-подуровне

Степень окисления серебра

Атомы серебра в соединениях имеют степени окисления 3, 2, 1, 0.

Степень окисления — это условный заряд атома в соединении: связь в молекуле между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается, то степень окисления положительная.

Ионы серебра

Валентность Ag

Атомы серебра в соединениях проявляют валентность III, II, I.

Валентность серебра характеризует способность атома Ag к образованию хмических связей. Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании химических соединений называются валентными электронами. Более обширное определение валентности это:

Число химических связей, которыми данный атом соединён с другими атомами

Валентность не имеет знака.

Квантовые числа Ag

Квантовые числа определяются последним электроном в конфигурации, для атома Ag эти числа имеют значение N = 4, L = 2, Ml = -2, Ms = ½

Видео заполнения электронной конфигурации (gif):

Результат:

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать. Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo. Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии ионизации для каждого последующего электрона.

Перейти к другим элементам таблицы менделеева

Источник

Квантовые числа

Материалы портала onx.distant.ru

Квантовые числа

Общая характеристика квантовых чисел

Принцип (запрет) Паули

Правило Хунда

Примеры решения задач

Задачи для самостоятельного решения

Общая характеристика квантовых чисел

Главное квантовое число n характеризует энергию электрона в атоме и размер электронной орбитали. Оно соответствует также номеру электронного слоя, на котором находится электрон. Совокупность электронов в атоме с одинаковым значением главного квантового числа n называют электронным слоем (энергетическим уровнем). n – принимает значения 1, 2, 3, …, ∞ . Энергетические уровни обозначают прописными латинскими буквами:

Значение n 1 2 3 4 5 6
Обозначение слоя K L M N O P

Различия в энергиях электронов, принадлежащих к различным подуровням данного энергетического уровня, отражает побочное (орбитальное) квантовое число l. Электроны в атоме с одинаковыми значениями n и l составляют энергетический подуровень (электронную оболочку). Максимальное число электронов в оболочке Nl:

Побочное квантовое число принимает целые значения 0, 1, … (n – 1). Обычно l обозначается не цифрами, а буквами:

Значение l 0 1 2 3 4
Обозначение орбитали s p d f g

Орбиталь – пространство вокруг ядра, в котором наиболее вероятно нахождение электрона.

Побочное (орбитальное) квантовое число l характеризует различное энергетическое состояние электронов на данном уровне, форму орбитали, орбитальный момент импульса электрона.

Таким образом, электрон, обладая свойствами частицы и волны, движется вокруг ядра, образуя электронное облако, форма которого зависит от значения l. Так, если l = 0, (s-орбиталь), то электронное облако имеет сферическую симметрию. При l = 1 (p-орбиталь) электронное облако имеет форму гантели. d-орбитали имеют различную форму: dz 2 — гантель, расположенная по оси Z с тором в плоскости X – Y, dx2 — y2 — две гантели, расположенные по осям X и Y; dxy, dxz, dyz, — две гантели, расположенные под 45 o к соответствующим осям.

  • Формы электронных облаков для различных состояний электронов в атомах

Магнитное квантовое число ml характеризует ориентацию орбитали в пространстве, а также определяет величину проекции орбитального момента импульса на ось Z. ml принимает значения от +l до — l, включая 0. Общее число значений ml равно числу орбиталей в данной электронной оболочке.

Магнитное спиновое квантовое число ms характеризует проекцию собственного момента импульса электрона на ось Z и принимает значения +1/2 и –1/2 в единицах h/2p (h – постоянная Планка).

Принцип (запрет) Паули

В атоме не может быть двух электронов со всеми четырьмя одинаковыми квантовыми числами. Принцип Паули определяет максимальное число электронов Nn, на электронном слое с номером n:

На первом электронном слое может находиться не более двух электронов, на втором – 8, на третьем – 18 и т. д.

Правило Хунда

Заполнение энергетических уровней происходит таким образом, чтобы суммарный спин был максимальным. Например, три р-электрона на орбиталях р-оболочки располагаются следующим образом:

Таким образом, каждый электрон занимает одну р-орбиталь.

Примеры решения задач

Задача 1. Охарактеризуйте квантовыми числами электроны атома углерода в невозбужденном состоянии. Ответ представьте в виде таблицы.

Решение. Электронная формула атома углерода: 1s 2 2s 2 2p 2 . В первом слое атома углерода находятся два s-электрона с антипараллельными спинами, для которых n = 1. Для двух s-электронов второго слоя n = 2. Спины двух р-электронов второго слоя параллельны; для них m s= +1/2.

№ электрона n l ml ms
1 1 0 0 +1/2
2 1 0 0 –1/2
3 2 0 0 +1/2
4 2 0 0 –1/2
5 2 1 1 +1/2
6 2 1 0 +1/2

Задача 2. Охарактеризуйте квантовыми числами внешние электроны атома кислорода в основном состоянии. Ответ представьте в виде таблицы.

Решение. Электронная формула атома кислорода: 1s 2 2s 2 2p 4 . Во внешнем слое у этого атома находятся 6 электронов 2s 2 2p 4 . Значения их квантовых чисел приведены в таблице.

№ электрона n l ml ms
1 2 0 0 +1/2
2 2 0 0 –1/2
3 2 1 1 +1/2
4 2 1 0 +1/2
5 2 1 –1 +1/2
6 2 1 1 –1/2

Задача 3 . Охарактеризуйте квантовыми числами пять электронов, находящихся в состоянии 4d. Ответ представьте в виде таблицы.

Решение. Согласно правилу Хунда электроны в квантовых ячейках располагаются следующим образом:

Значения главного, побочного и спинового квантовых чисел у электронов одинаковы и равны n=4, l=2, ms=+1/2. Рассматриваемые электроны отличаются значениями квантовых чисел ml.

№ электрона n l ml ms
1 4 2 2 +1/2
2 4 2 1 +1/2
3 4 2 0 +1/2
4 4 2 –1 +1/2
5 4 2 –2 +1/2


Задача 4.
Рассчитайте максимальное число электронов в электронном слое с n = 4.

Решение. Максимальное число электронов, обладающих данным значением главного квантового числа, рассчитываем по формуле (2). Следовательно, в третьем энергетическом уровне может быть не более 32 электронов.

Задача 5. Рассчитайте максимальное число электронов в электронной оболочке с l = 3.

Решение:

Максимальное число электронов в оболочке определяется выражением (1). Таким образом, максимальное число электронов в электронной оболочке с l = 3 равно 14.

Задачи для самостоятельного решения

1. Охарактеризуйте квантовыми числами электроны атома бора в основном состоянии. Ответ представьте в виде таблицы:

№ электрона n l ml ms
1 ? ? ? ?
2 ? ? ? ?
3 ? ? ? ?
4 ? ? ? ?
5 ? ? ? ?
№ электрона n l ml ms
1 1 0 0 +1/2
2 1 0 0 –1/2
3 2 0 0 +1/2
4 2 0 0 –1/2
5 2 1 1 +1/2

2. Охарактеризуйте квантовыми числами d-электроны атома железа в основном состоянии. Ответ представьте в виде таблиц:

Расположение 3d-электронов атома железа на орбиталях:

Значения квантовых чисел этих электронов:

№ электрона n l ml ms
1 ? ? ? ?
2 ? ? ? ?
3 ? ? ? ?
4 ? ? ? ?
5 ? ? ? ?
6 ? ? ? ?

Шесть 3d-электронов атома железа располагаются на орбиталях следующим образом

Квантовые числа этих электронов приведены в таблице

№ электрона n l ml ms
1 3 2 2 +1/2
2 3 2 1 +1/2
3 3 2 0 +1/2
4 3 2 — 1 +1/2
5 3 2 — 2 +1/2
6 3 2 2 — 1/2

3. Каковы возможные значения магнитного квантового числа ml, если орбитальное квантовое число l = 3?

Ответ: ml = +3; +2; +1; 0, — 1, — 2, — 3.

4. Охарактеризуйте квантовыми числами находящиеся во втором электронном слое электроны:

Ответ представьте в виде таблицы:

№ электрона n l ml ms
1 ? ? ? ?
2 ? ? ? ?
3 ? ? ? ?
4 ? ? ? ?
5 ? ? ? ?
6 ? ? ? ?
7 ? ? ? ?

Ответ: Электронная конфигурация 2s 2 2p 5 . Главное квантовое число для всех электронов равно 2. Для s электронов l = 0, для р-электронов l = 1.

5. Определите максимальное число электронов на электронном слое, для которого главное квантовое число n = 6.

Ответ: 72

6. Определите максимальное число электронов на электронной оболочке, для которой побочное квантовое число l = 4.

Ответ: 18

7. Определите максимальное число электронов на третьем слое.

Ответ: 18

8. Определите максимальное число электронов на 5d электронной оболочке.

Ответ: 10

9. Какие значения может принимать орбитальное (побочное) квантовое число l?

Ответ: от 0 до ( n — 1).

Источник

№ электрона n l ml ms
1 2 0 0 +1/2
2 2 0 — 1/2
3 2 1 1 +1/2
4 2 1 0 +1/2
5 2 1 — 1 +1/2
6 2 1 1 — 1/2
7 2 1 0