Какая степень окисления более характерна для олова

Степень окисления олова

Общие сведения о степени окисления олова

При нагревании палочки олова слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга. Олово обладает мягкостью и тягучестью и легко может быть прокатано в тонкие листы (станиоль).

Кроме обычного белого олова (тетрагональная кристаллическая решетка) существует серое олово (кубическая кристаллическая решетка), характеризующееся меньшим значением плотности. Белое олово устойчиво при температурах выше 14 o С, а серое – при температурах ниже 14 o С.

Степень окисления олова в соединениях

Олово проявляет отрицательную степень окисления (-2) в соединениях с s-элементами Iи II групп, которые носят названия станниды: Mg2Sn -2 , Na2Sn -2 .

Степень окисления (+4) наиболее характерна для олова. Она проявляется в оксиде, галогенидах, сульфиде и нитриде: Sn +4 O2, Sn +4 Cl4, Sn +4 F4, Sn +4 Br4, Sn +4 S2, Sn +4 3N4.

Известно, что олово также проявляет в соединениях степень окисления (+2): Sn +2 O, Sn +2 (OH)2, Sn +2 S, Sn +2 Cl2 и т.д.

Олово также существует в виде простого вещества степень окисления,в котором равна нулю.

Примеры решения задач

Задание Максимально возможную степень окисления азот проявляет в а) нитриде кальция; б) нитрите аммония; в) хлориде аммония; г) нитрате цинка?
Решение Для того, чтобы дать правильный ответ на поставленный вопрос будем поочередно определять степень окисления азота в каждом из предложенных соединений с помощью уравнения электронейтральности.

а) Формула нитрида кальция – Ca3N2. Степень окисления кальция всегда равна (+2). Примем за «х» значение степени окисления азота:

б) Формула нитрита аммония –NH4NO2. Степень окисления азота в составе иона аммония равна (-3), а в составе нитрит-иона – (+3).

в) Формула хлорида аммония –NH4Cl. Как было уже сказано в варианте (б), степень окисления азота в составе иона аммония равна (-3).

г) Формула нитрата цинка – Zn(NO3)2.Степень окисления цинка всегда равна (+2). Степень окисления кислорода в данном случае равна (-2). Примем за «х» значение степени окисления азота:

Это верный ответ, поскольку максимально возможная степень окисления азота равна (+5).

Ответ Вариант 4.
Задание В каком ряду все элементы могут проявлять степень окисления (-3):
  1. Ga, Al, Be;
  2. C, Se, F;
  3. S, Br, I;
  4. P, N, Sb.
Решение Значение степени окисления (-3) – это низшая степень окисления, которая определяется как разница между номером группы в Периодической системе Д.И. Менделеева, в которой расположен химический элемент и числом 8. Следовательно, все три элемента должны находиться в V группе. Это фосфор, азот и сурьма – вариант 4.
Ответ Вариант 4.

Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.

Источник

Олово: степени окисления и реакции с ним

Химические свойства олова

Олово – это легкий металл с атомным номером 50, который находится в 14-й группе периодической системы элементов. Этот элемент был известен еще в древности и считался одним из самых редких и дорогих металлов, поэтому изделия из олова могли позволить себе самые богатые жители Римской Империи и Древней Греции. Из олова изготавливали специальную бронзу, которой пользовались еще в третьем тысячелетии до нашей эры. Тогда бронза была самым прочным и популярным сплавом, а олово служило одной из примесей и использовалось более двух тысяч лет.

На латыни этот металл называли словом «stan­num», что означает стойкость и прочность, однако таким названием ранее обозначался сплав свинца и серебра. Только в IV веке этим словом начали называть само олово. Само же название «олово» имеет множество версий происхождения. В Древнем Риме сосуды для вина делались из свинца. Можно предположить, что оловом называли материал свинец, из которого изготавливали сосуды для хранения напитка оловина, употребляемого древними славянами.

В природе этот металл встречается редко, по распространенности в земной коре олово занимает всего лишь 47-е место и добывается из касситерита, так называемого оловянного камня, который содержит около 80 процентов этого металла.

Применение в промышленности

Так как олово является нетоксичным и весьма прочным металлом, он применяется в сплавах с другими металлами. По большей части его используют для изготовления белой жести, которая применяется в производстве банок для консервов, припоев в электронике, а также для изготовления бронзы.

Физические свойства олова

Этот элемент представляет собой металл белого цвета с серебристым отблеском.

Если нагреть олово, можно услышать потрескивание. Этот звук обусловлен трением кристалликов друг о друга. Также характерный хруст появится, если кусок олова просто согнуть.

Олово весьма пластично и ковко. В классических условиях этот элемент существует в виде «белого олова», которое может модифицироваться в зависимости от температуры. Например, на морозе белое олово превратится в серое и будет иметь структуру, схожую со структурой алмаза. Кстати, серое олово очень хрупкое и буквально на глазах рассыпается в порошок. В связи с этим в истории есть терминология «оловянная чума».

Раньше люди не знали о таком свойстве олова, поэтому из него изготавливались пуговицы и кружки для солдат, а также прочие полезные вещи, которые после недолгого времени на морозе превращались в порошок. Некоторые историки считают, что именно из-за этого свойства олова снизилась боеспособность армии Наполеона.

Получение олова

Основным способом получения олова является восстановление металла из руды, содержащей оксид олова(IV) с помощью угля, алюминия или цинка.

Особо чистое олово получают электрохимическим рафинированием или методом зонной плавки.

Химические свойства олова

При комнатной температуре олово довольно устойчиво к воздействию воздуха или воды. Это объясняется тем, что на поверхности металла возникает тонкая оксидная пленка.

На воздухе олово начинает окисляться только при температуре свыше 150 °С:

Если олово нагреть, этот элемент будет реагировать с большинством неметаллов, образуя соединения со степенью окисления +4 (она более характерна для этого элемента):

Взаимодействие олова и концентрированной соляной кислоты протекает довольно медленно:

Sn + 4HCl → H₂[SnCl₄] + H₂

С концентрированной серной кислотой олово реагирует очень медленно, тогда как с разбавленной в реакцию не вступает вообще.

Очень интересна реакция олова с азотной кислотой, которая зависит от концентрации раствора. Реакция протекает с образованием оловянной кислоты, H₂S­nO₃, которая представляет собой белый аморфный порошок:

3Sn + 4H­NO₃ + nH₂O = 3H₂S­nO₃·nH₂O + 4NO

Если же олово смешать с разбавленной азотной кислотой, этот элемент будет проявлять металлические свойства с образованием нитрата олова:

4Sn + 10H­NO₃ = 4Sn(NO₃)₂ + NH₄NO₃ + 3H₂O

Нагретое олово нагреть может реагировать со щелочами с выделением водорода:

Sn + 2KOH + 4H₂O = K₂[Sn(OH)₆] + 2H₂

Здесь вы найдете безопасные и очень красивые эксперименты с оловом.

Степени окисления олова

В простом состоянии степень окисления олова равняется нулю. Также Sn может иметь степень окисления +2: оксид олова(II) SnO, хлорид олова(II) SnCl₂, гидроксид олова(II) Sn(OH)₂. Степень окисления +4 наиболее характерна для оксида олова(IV) SnO₂, галогенидах(IV), например хлорид SnCl₄, сульфид олова(IV) SnS₂, нитрид олова(IV) Sn₃N₄.

Источник

Олово Sn

Олово в таблице менделеева занимает 50 место, в 5 периоде.

Понравился сайт? Расскажи друзьям!
Символ Sn
Номер 50
Атомный вес 118.7100000
Латинское название Stannum
Русское название Олово

Как самостоятельно построить электронную конфигурацию? Ответ здесь

Электронная схема олова

Sn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 2

Короткая запись:
Sn: [Kr]5s 2 4d 10 5p 2

Одинаковую электронную конфигурацию имеют атом олова и Te +2 , I +3 , Xe +4

Порядок заполнения оболочек атома олова (Sn) электронами: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p.

На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ — до 6, на ‘d’ — до 10 и на ‘f’ до 14

Олово имеет 50 электронов, заполним электронные оболочки в описанном выше порядке:

2 электрона на 1s-подуровне

2 электрона на 2s-подуровне

6 электронов на 2p-подуровне

2 электрона на 3s-подуровне

6 электронов на 3p-подуровне

2 электрона на 4s-подуровне

10 электронов на 3d-подуровне

6 электронов на 4p-подуровне

2 электрона на 5s-подуровне

10 электронов на 4d-подуровне

2 электрона на 5p-подуровне

Степень окисления олова

Атомы олова в соединениях имеют степени окисления 4, 2, -4.

Степень окисления — это условный заряд атома в соединении: связь в молекуле между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается, то степень окисления положительная.

Ионы олова

Валентность Sn

Атомы олова в соединениях проявляют валентность IV, II.

Валентность олова характеризует способность атома Sn к образованию хмических связей. Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании химических соединений называются валентными электронами. Более обширное определение валентности это:

Число химических связей, которыми данный атом соединён с другими атомами

Валентность не имеет знака.

Квантовые числа Sn

Квантовые числа определяются последним электроном в конфигурации, для атома Sn эти числа имеют значение N = 5, L = 1, Ml = 0, Ms = ½

Видео заполнения электронной конфигурации (gif):

Результат:

Энергия ионизации

Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать. Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo. Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии ионизации для каждого последующего электрона.

Перейти к другим элементам таблицы менделеева

Источник

Металлы IV группы главной подгруппы (Ge, Sn, Pb)

Германий (Germanium)

Германий относится к числу элементов, которые сначала были предсказаны Д.И.Менделеевым и лишь затем открыты. Менделеев поместил элемент, названный им экасилицием, в подгруппу углерода.

В 1885 г. австрийский химик Карл Ауэр фон Вельсбах, изучая состав нового минерала серебра, обнаружил, что в нем содержится около 7% какого-то неизвестного элемента. Вскоре немецкому ученому К.А.Винклеру удалось выделить его в виде простого вещества. Он назвал элемент германием в честь своей родины.

Германий встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и ее концентрированию германий выделяют в виде оксида GeO2, который восстанавливают водородом при 600 до простого вещества: GeO2 + 2H2 = Ge + 2H2O.

Германий – твердое хрупкое вещество серебристого цвета с металлическим блеском (tпл = 938 о С ), со структурой алмаза и свойствами полупроводника. При комнатной температуре он устойчив к действию воздуха, кислорода, воды, соляной и разбавленной серной кислот. Азотная и концентрированная серная кислота окисляют его до диоксида GeO2, особенно при нагревании: Ge + 2H2SO4 = GeO2↓ + 2SO2↑ + 2H2O

Германий взаимодействует также со щелочами в присутствии перекиси водорода. При этом образуются соли германиевой кислоты – германаты, например:

Соединения германия (II) малоустойчивы. Гораздо более характерны для германия соединения, в которых степень его окисления равна +4.

Германий обладает полупроводниковыми свойствами и с этим связано его основное применение. В технике его используют как материал для диодов, транзисторов, фотоэлементов. На основе пластин из высокочистого германия изготовляют солнечные батареи – устройства, преобразующие световую энергию в электрическую.

Из соединений германия применяют, например, GeO2, который входит в состав стекол, обладающих высоким коэффициентом преломления и прозрачностью в инфракрасной части спектра.

Олово (Stannum)

Олово наряду со свинцом, железом, золотом, ртутью, медью, серебром входит в число «семи металлов древности». Оно известно человечеству по крайней мере с середины III тысячелетия до н.э. Люди обнаружили, что добавка к меди 5-10% олова повышает ее прочность и несколько снижает температуру плавления: чистая медь плавится при 1083 о С , а медь содержащая 10% олова, — при 1005 о С .

В природе олово встречается в виде минерала касситерита SnO2, месторождения которого довольно редки: в древности его добывали лишь в Испании, на Кавказе и в Китае. Как свидетельствует гомеровский эпос, олово ценилось еще во времена Троянской войны. При прокаливании смеси касситерита с углем олово, благодаря низкой температуре плавления (232 о С ), легко отделялось. Так получают его и в наши дни.

Олово использовали для производства бронзы. Позже, когда человечество освоило выплавку железа, для которой необходима более высокая температура – порядка 1400 орудия из бронзы утратили своё значение.

Олово – мягкий серебристо-белый металл, пластичный и ковкий. Отлитая из олова палочка сгибается с характерным хрустом, вызванным трением друг от друга отдельных кристаллов. Интересно, что ниже 13,2 устойчива другая модификация – серое олово, которое имеет структуру алмаза. Переход белого олова в серое при низкой температуре часто происходит спонтанно, хотя для проведения его в лабораторных условиях требуется ввести небольшую затравку серого олова. Этот переход называют «оловянной чумой»: металл рассыпается в серый порошок, утрачивая металлические свойства. «Оловянная чума» послужила причиной гибели в 1912 г. английской экспедиции под руководством Роберта Скотта, направленной к Южному полюсу: керосин путешественники хранили в сосудах, паянных оловом.

Касситерит

Сплавы олова с сурьмой и медью применяются для изготовления подшипников. Эти сплавы обладают высокими антифрикционными свойствами. Сплавы олова со свинцом – припои – широко применяются для пайки. В качестве легирующего компонента олово входит в некоторые сплавы меди.

На воздухе олово при комнатной температуре не окисляется, но нагретое выше температуры плавления постепенно превращается в диоксид олова SnO2.

Вода на него не действует. Разбавленные соляная и серная кислоты действуют на него очень медленно, что объясняется большим перенапряжением водорода на этом металле. Концентрированные растворы этих кислот, особенно при нагревании, растворяют олово. При этом в соляной кислоте получается хлорид олова (II), а в серной – сульфат олова (IV):

C азотной кислотой олово взаимодействует тем интенсивнее, чем выше концентрация кислоты и температура. В разбавленной кислоте образуется растворимый нитрат олова (II): 4Sn + 10HNO3 = 4Sn(NO3)2 + NH4NO3 + 3H2O

а в концентрированной – соединения олова (IV), главным образом нерастворимая β-оловянная кислота, состав которой приблизительно соответствует формуле H2SnO3:

Концентрированные щелочи также растворяют олово. В этом случае получаются станниты – соли оловянистой кислоты H2SnO2:

На воздухе олово покрывается тонкой оксидной пленкой, обладающей защитным действием. Поэтому в условиях несильного коррозионного воздействия оно является стойким металлом. Около 40% всего выплавляемого олова расходуется для покрытия им изделий из железа, соприкасающихся с продуктами питания, прежде всего – консервных банок. Это объясняется указанной химической активностью олова, а также тем, что оно легко наносится на железо и что продукты его коррозии безвредны. Олово образует устойчивые соединения, в которых имеет степень окисления +2 и +4.

Свинец (Plumbum)

В Древнем Риме расплавленным свинцом заливали места стыков каменных блоков и труб водопровода (недаром в английском языке слово plumber – означает «водопроводчик»). Есть предположение, что именно поэтому многие историки отмечали частые отравления водой среди римлян.

Свинцовыми листами покрывали крыши зданий. Свинец шёл на изготовление печатей. Известны сосуды, отлитые из свинца. Плиний Старший в «Естественной истории» описывает и другие области применения этого металла: «В медицине свинец сам по себе применяется для стягивания рубцов, а привязанные в области чресел и почек пластинки из него своей более холодной природой сдерживают вожделения… Нерон… накладывая на грудь такие пластинки, громко произносил мелодекламации, показав этот способ для усиления голоса».

Свинцовые самородки крайне редко встречается в природе. Однако в виде соединения с серой – свинцового блеска, или галенита, PbS – свинец был известен уже древним мастерам. Красивые, блестящие кристаллы этого вещества, по-видимому привлекли внимание людей. Если положить их в костер, разведенный в неглубокой яме, на дно ее вскоре стечет расплавленный металл, ведь температура плавления свинца невысока – 327 о С . Так его получали уже в III тысячелетии до н.э. Интересно, что и в наши дни в основе промышленного производства свинца лежат те же химические реакции – прокаливание свинцового блеска на воздухе: PbO + C = Pb + CO. Только древесный уголь заменен гораздо более дешевым коксом.

В Средние века считали, что свинец, символом которого была планета Сатурн, может превратиться в золото: ведь свинец очень тяжелый металл. Происхождение латинского названия элемента Plumbum до сих пор вызывает споры среди исследователей.

Галенит

Свинец – тяжелый и легкоплавкий металл синевато-серого цвета, плохо проводящий тепло и электричество. Он обладает удивительной мягкостью – его можно без особых усилий резать ножом. На воздухе свинец тускнеет, покрываясь тонкой плёнкой оксида PbO или основного карбоната Pb3(OH)2(CO3)2. Вода сама по себе не реагирует со свинцом, но в присутствии воздуха свинец постепенно разрушается водой с образованием гидроксида свинца (II):

Однако при соприкосновении с жесткой водой свинец покрывается защитной пленкой нерастворимых солей (главным образом сульфата и основного карбоната свинца), препятствующей дальнейшему действию воды и образованию гидроксида.

Разбавленные соляная и серная кислоты почти не действуют на свинец. Это связано со значительным перенапряжением выделения водорода на свинце, а также с малой растворимостью хлорида и сульфата свинца, закрывающих поверхность растворяющегося металла. В концентрированной серной кислоте, особенно при нагревании, свинец интенсивно растворяется с образованием растворимой кислой соли Pb(HSO4)2.

В азотной кислоте свинец растворяется легко, причем в кислоте невысокой концентрации быстрее, чем в концентрированной. Это объясняется тем, что растворимость продукта коррозии – нитрата свинца – падает с увеличением концентрации кислоты. Сравнительно легко свинец растворяется в уксусной кислоте, содержащей растворенный кислород.

О способности свинца реагировать с уксусом знали уже в древности: из ацетата свинца в Древнем Риме делали свинцовые белила – смесь основных карбонатов свинца. Эту краску можно также получить взаимодействием свинцового сахара (ацетата свинца) с углекислым газом.

В щелочах свинец также растворяется, хотя и с небольшой скоростью; более интенсивно растворение идет в горячих разбавленных растворах. В результате растворения образуются гидроксоплюмбиты, например:

Все растворимые соединения свинца ядовиты.

Для свинца характерны степени окисления +2 и +4. Значительно более устойчивы и многочисленны со степенью окисления свинца +2.

Оксиды свинца

Сегодня около половины всего выплавляемого свинца используют в производстве аккумуляторов. Из свинца изготовляют оболочки кабелей, аппаратуру для химической промышленности, пули. Свинцовые экраны хорошо поглощают радиоактивное и рентгеновское излучения. Свинцовый сурик Pb3O4 необходим в производстве красок и эмалей. Оксид свинца (IV) PbO2, являющийся сильным окислителем, входит в состав спичек. В качестве инициирующего взрывчатого вещества используют азид свинца Pb(N3)2 – соль азидоводородной кислоты HN3.

Источник

Читайте также:  Пайка меди паяльником оловом