Какие вещества взаимодействуют между собой с образованием гидроксида меди ii

Содержание
  1. Гидроксид меди (II)
  2. Гидроксид меди (II)
  3. Способы получения гидроксида меди (II)
  4. Химические свойства
  5. Гидроксид меди (II), характеристика, свойства и получение, химические реакции
  6. Гидроксид меди (II), характеристика, свойства и получение, химические реакции.
  7. Краткая характеристика гидроксида меди (II):
  8. Физические свойства гидроксида меди (II):
  9. Получение гидроксида меди (II):
  10. Химические свойства гидроксида меди (II). Химические реакции гидроксида меди (II):
  11. Применение и использование гидроксида меди (II):
  12. 4. Какие вещества взаимодействуют с образованием гидроксида меди( II)?
  13. С какими веществами взаимодействует hcl : cu?
  14. Оксид серы (IV) взаимодействует с группой веществ : А) H2SO4, KCl, NaOH Б) H2O, Fe2O3, LiOH В) Ca(OH)2, HCl, Na2O Г) BaSO4, KOH, CaO?
  15. Выберите формулы веществ, взаимодействующих с оксидом серы(4) N2O3, Ba(OH)2, H3PO4, H2O, CaO, NaOH, NaCl, P2O5, KOH?
  16. 1. H²SO⁴ + NaOH → 2?
  17. NaOH + CuSO4 KOH + H2SO3 CaO + H2O Al + HCl?
  18. С каким веществом взаимодействует серная кислота :а) медьб) цинкв) сереброг) ртутьКакое вещество не диссоциирует :а) ZnOб) H2SO4в) NaOHг) KClОсадок образуется при взаимодействии пары веществ :а) NaOH ?
  19. Гидроксид меди (2) можно получить взаимодействием веществ формулы которыха)CuSO4 и H2Oб)CuO и H2Oв)CuSO4 и NaOHг)CuS и NaOHНапишите уравнение протекающей реакции?
  20. С каким из данных веществ будет реагировать гидроксид натрия : HCL ; SO2 ; Ca(OH)2 ; CaO ; CO ; KOH ; Fe?
  21. Выберите с какими веществами будет взаимодействовать оксид серы 4 N2O3, CaO, KOH, HCL, H2O?
  22. С такими из перечисленных веществ взаимодействует CuO : HCl, NaOH, P2O5, H2O, CaO, NaCl, H2SO4?
  23. Какие вещества взаимодействуют между собой с образованием гидроксида меди ii
  24. Медь. Химия меди и ее соединений
  25. Положение в периодической системе химических элементов
  26. Электронное строение меди
  27. Физические свойства
  28. Нахождение в природе
  29. Способы получения меди
  30. Качественные реакции на ионы меди (II)
  31. Химические свойства меди
  32. Оксид меди (II)
  33. Способы получения оксида меди (II)
  34. Химические свойства оксида меди (II)
  35. Оксид меди (I)
  36. Способы получения оксида меди (I)
  37. Химические свойства оксида меди (I)
  38. Гидроксид меди (II)
  39. Способы получения гидроксида меди (II)
  40. Химические свойства
  41. Соли меди
  42. Соли меди (I)
  43. Соли меди (II)
  44. Медь и соединения меди

Гидроксид меди (II)

Гидроксид меди (II)

Гидроксид меди (II) Сu(OН)2 — голубое аморфное или кристаллическое вещество. Практически нерастворим в воде.

Способы получения гидроксида меди (II)

1. Гидроксид меди (II) можно получить действием раствора щелочи на соли меди (II).

Например , хлорид меди (II) реагирует с водным раствором гидроксида натрия с образованием гидроксида меди (II) и хлорида натрия:

CuCl2 + 2NaOH → Cu(OH)2 + 2NaCl

Химические свойства

Гидроксид меди (II) Сu(OН)2 проявляет слабо выраженные амфотерные свойства (с преобладанием основных ).

1. Взаимодействует с кислотами .

Например , взаимодействует с бромоводородной кислотой с образованием бромида меди (II) и воды:

2. Гидроксид меди (II) легко взаимодействует с раствором аммиака , образуя сине-фиолетовое комплексное соединение:

3. При взаимодействии гидроксида меди (II) с концентрированными (более 40%) растворами щелочей образуется комплексное соединение:

Но этой реакции в ЕГЭ по химии пока нет!

4. При нагревании гидроксид меди (II) разлагается :

Источник

Гидроксид меди (II), характеристика, свойства и получение, химические реакции

Гидроксид меди (II), характеристика, свойства и получение, химические реакции.

Гидроксид меди (II) – неорганическое вещество, имеет химическую формулу Cu(OH)2.

Краткая характеристика гидроксида меди (II):

Гидроксид меди (II) – неорганическое кристаллическое или аморфное вещество ярко-голубого цвета.

Химическая формула гидроксида меди (II) Cu(OH)2.

Не растворяется в воде. Растворимость в воде 0,000673 г/100 мл.

Не горит. Термически неустойчивый. При нагревании до 70-90 °C порошка Cu(ОН)2 или его водных суспензий разлагается на оксид меди (II) и воду.

Гидроксид меди токсичен.

Физические свойства гидроксида меди (II):

Наименование параметра: Значение:
Химическая формула Cu(OH)2
Синонимы и названия иностранном языке сopper(II) hydroxide (англ.)
Тип вещества неорганическое
Внешний вид ярко-голубые кристаллы либо ярко-голубая водная суспензия (аморфное состояние)
Цвет ярко-голубой
Вкус —*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество – кристаллы, при 20 °C), кг/м 3 3370
Плотность (состояние вещества – твердое вещество – кристаллы, при 20 °C), г/см 3 3,37
Температура разложения, °C 70
Гигроскопичность отсутствует
Молярная масса, г/моль 97,561

Получение гидроксида меди (II):

В лаборатории гидроксид меди (II) получается действием на холоде растворимых гидроксидов металлов на растворимые соли меди в результате следующих химических реакций:

  1. 1. в результате взаимодействия нитрата меди (II) с гидроксидом натрия :

При этом гидроксид меди (II) выпадает в осадок.

При этом гидроксид меди (II) выпадает в осадок.

  1. 3. в результате взаимодействия нитрата меди (II) с гидроксидом калия:

При этом гидроксид меди (II) выпадает в осадок.

  1. 4. в результате взаимодействия сульфата меди (II) с гидроксидом кальция:

При этом гидроксид меди (II) выпадает в осадок.

  1. 5. в результате взаимодействия хлорида меди (II) с гидроксидом натрия:

При этом гидроксид меди (II) выпадает в осадок.

Химические свойства гидроксида меди (II). Химические реакции гидроксида меди (II):

Гидроксид меди (II) – слабое основание. Проявляет амфотерные свойства.

Химические свойства гидроксида меди (II) аналогичны свойствам гидроксидов других амфотерных металлов . Поэтому для него характерны следующие химические реакции:

1. реакция гидроксида меди (II) с ортофосфорной кислотой:

В результате реакции образуются фосфат меди (II) и вода . В качестве исходного вещества используется разбавленный раствор ортофосфорной кислоты.

2. реакция гидроксида меди (II) с азотной кислотой:

В результате реакции образуются нитрат меди (II) и вода . В качестве исходного вещества используется разбавленный раствор азотной кислоты.

Аналогично проходят реакции гидроксида меди (II) и с другими кислотами.

3. реакция гидроксида меди (II) и сероводорода:

В результате реакции образуются сульфид меди (II) и вода . В ходе реакции используется суспензия гидроксида меди (II) и насыщенный раствор сероводорода.

4. реакция гидроксида меди (II) и оксида углерода:

В результате реакции образуются карбонат-дигидроксид димеди (II) и вода .

5. реакция гидроксида меди (II) и оксида селена:

В результате реакции образуются селенит меди (II) и вода . Реакция протекает при нагревании.

6. реакция гидроксида меди (II) и гидроксида натрия:

В результате реакции образуется тетрагидроксокупрат натрия.

7. реакция гидроксида меди (II), аммиака и воды:

В результате реакции образуется гидроксид диакватетрааммин меди (I).

8. реакция гидроксида меди (II) и гидрата аммиака:

В результате реакции образуются гидроксид тетрааммин меди (II) и вода. Гидрат аммиака используется в ходе реакции в виде концентрированного раствора.

Гидроксид тетрааммин меди (II) имеет интенсивный сине-фиолетовый цвет, поэтому его используют в аналитической химии для определения малых количеств ионов Cu 2+ в растворе.

9. реакция гидроксида меди (II) с кислородом:

При длительном нахождении на воздухе, обогащённом кислородом, гидроксид меди (II) вступает в обратимую реакцию с кислородом , образуя грязно-красный оксид меди (III). В результате реакции образуется оксид меди (III) и вода.

При избытке влаги может образоваться гидроксид куприла (III) и вода.

10. реакция термического разложения гидроксида меди (II):

В результате реакции образуются оксид меди (II) и вода .

Применение и использование гидроксида меди (II):

Гидроксид меди (II) используется:

– как пигмент при производстве стекол, керамики, красок,

– как катализатор в химической промышленности.

Источник

4. Какие вещества взаимодействуют с образованием гидроксида меди( II)?

Химия | 5 — 9 классы

4. Какие вещества взаимодействуют с образованием гидроксида меди( II)?

A. Cu(NO3)2, NAOH Б.

При взаимодейтсвии выделяется оксид углерода(IV)?

Na2CO3, H2SiO3 Г.

С какими веществами взаимодействует hcl : cu?

С какими веществами взаимодействует hcl : cu?

Оксид серы (IV) взаимодействует с группой веществ : А) H2SO4, KCl, NaOH Б) H2O, Fe2O3, LiOH В) Ca(OH)2, HCl, Na2O Г) BaSO4, KOH, CaO?

Оксид серы (IV) взаимодействует с группой веществ : А) H2SO4, KCl, NaOH Б) H2O, Fe2O3, LiOH В) Ca(OH)2, HCl, Na2O Г) BaSO4, KOH, CaO.

Читайте также:  Двухосновный спирт плюс гидроксид меди

Выберите формулы веществ, взаимодействующих с оксидом серы(4) N2O3, Ba(OH)2, H3PO4, H2O, CaO, NaOH, NaCl, P2O5, KOH?

Выберите формулы веществ, взаимодействующих с оксидом серы(4) N2O3, Ba(OH)2, H3PO4, H2O, CaO, NaOH, NaCl, P2O5, KOH.

1. H²SO⁴ + NaOH → 2?

HNO³ + Fe(OH)² → ( Расставить коэффициенты) Очень надо, срочно!

NaOH + CuSO4 KOH + H2SO3 CaO + H2O Al + HCl?

NaOH + CuSO4 KOH + H2SO3 CaO + H2O Al + HCl.

С каким веществом взаимодействует серная кислота :а) медьб) цинкв) сереброг) ртутьКакое вещество не диссоциирует :а) ZnOб) H2SO4в) NaOHг) KClОсадок образуется при взаимодействии пары веществ :а) NaOH ?

С каким веществом взаимодействует серная кислота :

Какое вещество не диссоциирует :

Осадок образуется при взаимодействии пары веществ :

Гидроксид меди (2) можно получить взаимодействием веществ формулы которыха)CuSO4 и H2Oб)CuO и H2Oв)CuSO4 и NaOHг)CuS и NaOHНапишите уравнение протекающей реакции?

Гидроксид меди (2) можно получить взаимодействием веществ формулы которых

Напишите уравнение протекающей реакции.

С каким из данных веществ будет реагировать гидроксид натрия : HCL ; SO2 ; Ca(OH)2 ; CaO ; CO ; KOH ; Fe?

С каким из данных веществ будет реагировать гидроксид натрия : HCL ; SO2 ; Ca(OH)2 ; CaO ; CO ; KOH ; Fe.

Выберите с какими веществами будет взаимодействовать оксид серы 4 N2O3, CaO, KOH, HCL, H2O?

Выберите с какими веществами будет взаимодействовать оксид серы 4 N2O3, CaO, KOH, HCL, H2O.

С такими из перечисленных веществ взаимодействует CuO : HCl, NaOH, P2O5, H2O, CaO, NaCl, H2SO4?

С такими из перечисленных веществ взаимодействует CuO : HCl, NaOH, P2O5, H2O, CaO, NaCl, H2SO4.

Вы зашли на страницу вопроса 4. Какие вещества взаимодействуют с образованием гидроксида меди( II)?, который относится к категории Химия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

1. Сходную конфигурацию имеют атомы элементов, которые находятся в одной группе. В данном случае, с Магнием сходную конфигурацию будет иметь Кальций. ОТвет : 1) Са 2. Атомный радиус в периоде уменьшается слева направо, а в группах снизу вверх : От..

Решение в прикрепленном файле. Дигидрофосфат калия KH2PO4.

Помоги пжznanija. Com / task / 25675691.

Физические явления — это явления, при которых изменяется агрегатное состояние, размер, форма, но состав вещества не изменяется, а химическое явление — это явление, при котором из одних веществ образуются другие. Признаки : изменение цвета, появление..

C | C — C — C≡C — 3, 3 диметилбутин — 1 | C CH3 CH3 | | CH3 — C — C≡CH + HCL — — >CH3 — C — C = CH2 | | | СH3 CH3 CL здесь происходит разрыв тройной связи , к третичному углероду присоединяется хлор , а к CH водород , это называется в — во 3, 3 димет..

Ответ ниже на фотографии : ).

1. 2Al + 3H2SO4 = AL2(SO4)3 + 3H22. NaCl + AgNO3 = AgCl + NaNO33. FeCl2 + 2KOH = 2KCL + Fe(OH)24. 2KOH + CO2 = K2CO3 + H2O5. 2HCl + Cu(OH)2 = CuCl2 + 2H2O6. Fe(OH)3 = Fe + 2H2O.

Ловите. Старайтесь вникнуть.

Н3РО4 + 3 LiOH — — — — — Li3РО4 + 3 Н2О М(Н3РО4) = 98г / моль М (LiОН) = 24 г / моль По уравнению реакции составляем пропорцию : х : 98 г = 13, 2 г : (24 * 3 моль) х = (13, 2 * 98) / 72 х = 17, 97 г Ответ : для нейтрализации потребуется масса фосфорн..

Высший разум (176289)За 1 атомную единицу массы (а. Е. м. ) принята 1 / 12 массы атома углерода, или 2 * 10 ^ 23 г / 12 = 1, 66 * 10 ^ — 24 г Тогда масса атома азота : В атомных единица массы — 14 а. Е. м (что и записано в таблице Менделеева) В гр..

Источник

Какие вещества взаимодействуют между собой с образованием гидроксида меди ii

Оксид меди (II) CuO – кристаллы черного цвета, кристаллизуются в моноклинной сингонии, плотность 6,51 г/см 3 , температура плавления 1447°С (под давлением кислорода). При нагревании до 1100°С разлагается с образованием оксида меди (I):

В воде не растворяется и не реагирует с ней. Имеет слабовыраженные амфотерные свойства с преобладанием основных.

В водных растворах аммиака образует гидроксид тетраамминмеди (II):

Легко реагирует с разбавленными кислотами с образованием соли и воды:

При сплавлении со щелочами образует купраты:

Восстанавливается водородом, угарным газом и активными металлами до металлической меди:

CuO + CO = Cu + CO2;

CuO + Mg = Cu + MgO.

Получается при прокаливании гидроксида меди (II) при 200°С:

Cu(OH)2 = CuO + H2O

или при окислении металлической меди на воздухе при 400–500°С:

Гидроксид меди (II) Cu(OH)2 – вещество голубого цвета, существует в аморфной и кристаллической формах, кристаллическая решетка ромбическая, плотность 3,37 г/см 3 , при нагревании выше 70°С разлагается на оксид меди (II) и воду:

В воде плохо растворим. Имеет слабовыраженные амфотерные свойства с преобладанием основных.

Легко реагирует с кислотами с образованием солей:

В водных растворах щелочей образует неустойчивые ярко-синие гидроксокомплексы:

В растворе аммиака – устойчивые аммиакаты темно-синего цвета:

Проявляя основные свойства, взаимодействует с углекислым газом образованием основного карбоната меди (II) – малахита:

Получается при обменном взаимодействии солей меди (II) и щелочи:

кристаллический гидроксид меди (II) образуется при введении гидроксида натрия или калия в аммиачный раствор сульфата меди (II):

Источник

Медь. Химия меди и ее соединений

Положение в периодической системе химических элементов

Медь расположена в 11 группе (или в побочной подгруппе II группы в короткопериодной ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение меди

Электронная конфигурация меди в основном состоянии :

+29Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 1s 2s 2p

3s 3p 4s 3d

У атома меди уже в основном энергетическом состоянии происходит провал (проскок) электрона с 4s-подуровня на 3d-подуровень.

Физические свойства

Медь – твердый металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь относительно легко поддается механической обработке. В природе встречается в том числе в чистом виде и широко применяется в различных отраслях науки, техники и производства.

Изображение с портала zen.yandex.com/media/id/5d426107ae56cc00ad977411/uralskaia-boginia-liubvi-5d6bcceda660d700b075a12d

Температура плавления 1083,4 о С, температура кипения 2567 о С, плотность меди 8,92 г/см 3 .

Медь — ценный металл в сфере вторичной переработки. Сдав лом меди в пункт приема, Вы можете получить хорошее денежное вознаграждение. Подробнее про прием лома меди.

Нахождение в природе

Медь встречается в земной коре (0,0047-0,0055 масс.%), в речной и морской воде. В природе медь встречается как в соединениях, так и в самородном виде. В промышленности используют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Также распространены и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2 (OH) 2 CO 3 . Иногда медь встречается в самородном виде, масса которых может достигать 400 тонн .

Способы получения меди

Медь получают из медных руд и минералов. Основные методы получения меди — электролиз, пирометаллургический и гидрометаллургический.

  • Гидрометаллургический метод: р астворение медных минералов в разбавленных растворах серной кислоты, с последующим вытеснением металлическим железом.

Например , вытеснение меди из сульфата железом:

CuSO4 + Fe = Cu + FeSO4

  • Пирометаллургический метод : получение меди из сульфидных руд. Это сложный процесс, который включает большое количество реакций. Основные стадии процесса:

1) Обжиг сульфидов:

2CuS + 3O2 = 2CuO + 2SO2

2) восстановление меди из оксида, например, водородом:

CuO + H2 = Cu + H2O

  • Электролиз растворов солей меди:

Качественные реакции на ионы меди (II)

Качественная реакция на ионы меди +2 – взаимодействие солей меди (II) с щелочами . При этом образуется голубой осадок гидроксида меди(II).

Читайте также:  Чернение меди домашних условиях

Например , сульфат меди (II) взаимодействует с гидроксидом натрия:

Соли меди (II) окрашивают пламя в зеленый цвет.

Химические свойства меди

В соединениях медь может проявлять степени окисления +1 и +2.

1. Медь — химически малоактивный металл. При нагревании медь может реагировать с некоторыми неметаллами: кислородом, серой, галогенами.

1.1. При нагревании медь реагирует с достаточно сильными окислителями , например , с кислородом , образуя CuО, Cu2О в зависимости от условий:

2Cu + О2 → 2CuО

1.2. Медь реагирует с серой с образованием сульфида меди (II):

Cu + S → CuS

1.3. Медь взаимодействует с галогенами . При этом образуются галогениды меди (II):

Но, обратите внимание:

2Cu + I2 = 2CuI

1.4. С азотом, углеродом и кремнием медь не реагирует:

Cu + N2

Cu + C

Cu + Si

1.5. Медь не взаимодействует с водородом.

1.6. Медь взаимодействует с кислородом с образованием оксида:

2Cu + O2 → 2CuO

2. Медь взаимодействует и со сложными веществами:

2.1. Медь в сухом воздухе и при комнатной температуре не окисляется, но во влажном воздухе, в присутствии оксида углерода (IV) покрывается зеленым налетом карбоната гидроксомеди (II):

2.2. В ряду напряжений медь находится правее водорода и поэтому не может вытеснить водород из растворов минеральных кислот (разбавленной серной кислоты и др.).

Например , медь не реагирует с разбавленной серной кислотой :

2.3. При этом медь реагирует при нагревании с концентрированной серной кислотой . При нагревании реакция идет, образуются оксид серы (IV), сульфат меди (II) и вода:

2.4. Медь реагирует даже при обычных условиях с азотной кислотой .

С концентрированной азотной кислотой:

С разбавленной азотной кислотой:

Реакция меди с азотной кислотой

2.5. Растворы щелочей на медь практически не действуют.

2.6. Медь вытесняет металлы, стоящие правее в ряду напряжений, из растворов их солей .

Например , медь реагирует с нитратом ртути (II) с образованием нитрата меди (II) и ртути:

Hg(NO 3 ) 2 + Cu = Cu(NO 3 ) 2 + Hg

2.7. Медь окисляется оксидом азота (IV) и солями железа (III)

2Cu + NO2 = Cu2O + NO

Оксид меди (II)

Оксид меди (II) CuO – твердое кристаллическое вещество черного цвета.

Способы получения оксида меди (II)

Оксид меди (II) можно получить различными методами :

1. Термическим разложением гидроксида меди (II) при 200°С :

2. В лаборатории оксид меди (II) получают окислением меди при нагревании на воздухе при 400–500°С:

2Cu + O2 2CuO

3. В лаборатории оксид меди (II) также получают прокаливанием солей (CuOH)2CO3, Cu(NO3)2:

Химические свойства оксида меди (II)

Оксид меди (II) – основный оксид (при этом у него есть слабо выраженные амфотерные свойства) . При этом он является довольно сильным окислителем.

1. При взаимодействии оксида меди (II) с сильными и растворимыми кислотами образуются соли.

Например , оксид меди (II) взаимодействует с соляной кислотой:

СuO + 2HBr = CuBr2 + H2O

CuO + 2HCl = CuCl2 + H2O

2. Оксид меди (II) вступает в реакцию с кислотными оксидами.

Например , оксид меди (II) взаимодействует с оксидом серы (VI) с образованием сульфата меди (II):

3. Оксид меди (II) не взаимодействует с водой.

4. В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства:

Например , оксид меди (II) окисляет аммиак :

3CuO + 2NH3 → 3Cu + N2 + 3H2O

Оксид меди (II) можно восстановить углеродом, водородом или угарным газом при нагревании:

СuO + C → Cu + CO

Более активные металлы вытесняют медь из оксида.

Например , алюминий восстанавливает оксид меди (II):

3CuO + 2Al = 3Cu + Al2O3

Оксид меди (I)

Оксид меди (I) Cu2O – твердое кристаллическое вещество коричнево-красного цвета.

Способы получения оксида меди (I)

В лаборатории оксид меди (I) получают восстановлением свежеосажденного гидроксида меди (II), например, альдегидами или глюкозой:

Химические свойства оксида меди (I)

1. Оксид меди (I) обладает основными свойствами.

При действии на оксид меди (I) галогеноводородных кислот получают галогениды меди (I) и воду:

Например , соляная кислота с оксидом меди (I) образует хлорид меди (I):

Cu2O + 2HCl = 2CuCl↓ + H2O

2. При растворении Cu2O в концентрированной серной, азотной кислотах образуются только соли меди (II):

3. Устойчивыми соединениями меди (I) являются нерастворимые соединения (CuCl, Cu2S) или комплексные соединения [Cu(NH3)2] + . Последние получают растворением в концентрированном растворе аммиака оксида меди (I), хлорида меди (I):

Аммиачные растворы солей меди (I) взаимодействуют с ацетиленом :

СH ≡ CH + 2[Cu(NH3)2]Cl → СuC ≡ CCu + 2NH4Cl

4. В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность:

Например , при взаимодействии с угарным газом, более активными металлами или водородом оксид меди (II) проявляет свойства окислителя :

Cu2O + CO = 2Cu + CO2

А под действием окислителей, например, кислорода свойства восстановителя :

Гидроксид меди (II)

Способы получения гидроксида меди (II)

1. Гидроксид меди (II) можно получить действием раствора щелочи на соли меди (II).

Например , хлорид меди (II) реагирует с водным раствором гидроксида натрия с образованием гидроксида меди (II) и хлорида натрия:

CuCl2 + 2NaOH → Cu(OH)2 + 2NaCl

Химические свойства

Гидроксид меди (II) Сu(OН)2 проявляет слабо выраженные амфотерные свойства (с преобладанием основных ).

1. Взаимодействует с кислотами .

Например , взаимодействует с бромоводородной кислотой с образованием бромида меди (II) и воды:

2. Гидроксид меди (II) легко взаимодействует с раствором аммиака , образуя сине-фиолетовое комплексное соединение:

3. При взаимодействии гидроксида меди (II) с концентрированными (более 40%) растворами щелочей образуется комплексное соединение:

Но этой реакции в ЕГЭ по химии пока нет!

4. При нагревании гидроксид меди (II) разлагается :

Соли меди

Соли меди (I)

В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность . Как восстановители они реагируют с окислителями.

Например , хлорид меди (I) окисляется концентрированной азотной кислотой :

Также хлорид меди (I) реагирует с хлором :

2CuCl + Cl2 = 2CuCl2

Хлорид меди (I) окисляется кислородом в присутствии соляной кислоты:

4CuCl + O2 + 4HCl = 4CuCl2 + 2H2O

Прочие галогениды меди (I) также легко окисляются другими сильными окислителями:

Иодид меди (I) реагирует с концентрированной серной кислотой :

Сульфид меди (I) реагирует с азотной кислотой. При этом образуются различные продукты окисления серы на холоде и при нагревании:

Для соединений меди (I) возможна реакция диспропорционирования :

2CuCl = Cu + CuCl2

Комплексные соединения типа [Cu(NH3)2] + получают растворением в концентрированном растворе аммиака :

Соли меди (II)

В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства.

Например , соли меди (II) окисляют иодиды и сульфиты :

2CuCl2 + 4KI = 2CuI + I2 + 4KCl

Бромиды и иодиды меди (II) можно окислить перманганатом калия :

Соли меди (II) также окисляют сульфиты :

Более активные металлы вытесняют медь из солей.

Например , сульфат меди (II) реагирует с железом :

CuSO4 + Fe = FeSO4 + Cu

Сульфид меди (II) можно окислить концентрированной азотной кислотой . При нагревании возможно образование сульфата меди (II):

Еще одна форма этой реакции:

CuS + 10HNO 3( конц .) = Cu(NO 3 ) 2 + H 2 SO 4 + 8NO 2 ↑ + 4H 2 O

При горении сульфида меди (II) образуется оксид меди (II) и диоксид серы:

2CuS + 3O2 2CuO + 2SO2

Соли меди (II) вступают в обменные реакции, как и все соли.

Например , растворимые соли меди (II) реагируют с сульфидами:

CuBr2 + Na2S = CuS↓ + 2NaBr

При взаимодействии солей меди (II) с щелочами образуется голубой осадок гидроксида меди (II):

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

Электролиз раствора нитрата меди (II):

Некоторые соли меди при нагревании разлагаются , например , нитрат меди (II):

Основный карбонат меди разлагается на оксид меди (II), углекислый газ и воду:

При взаимодействии солей меди (II) с избытком аммиака образуются аммиачные комплексы:

При смешивании растворов солей меди (II) и карбонатов происходит гидролиз и по катиону слабого основания, и по аниону слабой кислоты:

Медь и соединения меди

1) Через раствор хлорида меди (II) с помощью графитовых электродов пропускали постоянный электрический ток. Выделившийся на катоде продукт электролиза растворили в концентрированной азотной кислоте. Образовавшийся при этом газ собрали и пропустили через раствор гидроксида натрия. Выделившийся на аноде газообразный продукт электролиза пропустили через горячий раствор гидроксида натрия. Напишите уравнения описанных реакций.

Читайте также:  Коп меди с металлоискателем

2) Вещество, полученное на катоде при электролизе расплава хлорида меди (II), реагирует с серой. Полученный продукт обработали концентрированной азотной кислотой, и выделившийся газ пропустили через раствор гидроксида бария. Напишите уравнения описанных реакций.

3) Неизвестная соль бесцветна и окрашивает пламя в желтый цвет. При легком нагревании этой соли с концентрированной серной кислотой отгоняется жидкость, в которой растворяется медь; последнее превращение сопровождается выделением бурого газа и образованием соли меди. При термическом распаде обеих солей одним из продуктов разложения является кислород. Напишите уравнения описанных реакций.

4) При взаимодействии раствора соли А со щелочью было получено студенистое нерастворимое в воде вещество голубого цвета, которое растворили в бесцветной жидкости Б с образованием раствора синего цвета. Твердый продукт, оставшийся после осторожного выпаривания раствора, прокалили; при этом выделились два газа, один из которых бурого цвета, а второй входит в состав атмосферного воздуха, и осталось твердое вещество черного цвета, которое растворяется в жидкости Б с образованием вещества А. Напишите уравнения описанных реакций.

5) Медную стружку растворили в разбавленной азотной кислоте, и раствор нейтрализовали едким кали. Выделившееся вещество голубого цвета отделили, прокалили (цвет вещества изменился на черный), смешали с коксом и повторно прокалили. Напишите уравнения описанных реакций.

6) В раствор нитрата ртути (II) добавили медную стружку. После окончания реакции раствор профильтровали, и фильтрат по каплям прибавляли к раствору, содержащему едкий натр и гидроксид аммония. При этом наблюдали кратковременное образование осадка, который растворился с образованием раствора ярко-синего цвета. При добавлении в полученный раствор избытка раствора серной кислоты происходило изменение цвета. Напишите уравнения описанных реакций.

7) Оксид меди (I) обработали концентрированной азотной кислотой, раствор осторожно выпарили и твердый остаток прокалили. Газообразные продукты реакции пропустили через большое количество воды и в образовавшийся раствор добавили магниевую стружку, в результате выделился газ, используемый в медицине. Напишите уравнения описанных реакций.

8) Твердое вещество, образующееся при нагревании малахита, нагрели в атмосфере водорода. Продукт реакции обработали концентрированной серной кислотой, внесли в раствор хлорида натрия, содержащий медные опилки, в результате образовался осадок. Напишите уравнения описанных реакций.

9) Соль, полученную при растворении меди в разбавленной азотной кислоте, подвергли электролизу, используя графитовые электроды. Вещество, выделившееся на аноде, ввели во взаимодействие с натрием, а полученный продукт реакции поместили в сосуд с углекислым газом. Напишите уравнения описанных реакций.

10) Твердый продукт термического разложения малахита растворили при нагревании в концентрированной азотной кислоте. Раствор осторожно выпарили, и твердый остаток прокалили, получив вещество черного цвета, которое нагрели в избытке аммиака (газ). Напишите уравнения описанных реакций.

11) К порошкообразному веществу черного цвета добавили раствор разбавленной серной кислоты и нагрели. В полученный раствор голубого цвета приливали раствор едкого натра до прекращения выделения осадка. Осадок отфильтровали и нагрели. Продукт реакции нагревали в атмосфере водорода, в результате чего получилось вещество красного цвета. Напишите уравнения описанных реакций.

12) Неизвестное вещество красного цвета нагрели в хлоре, и продукт реакции растворили в воде. В полученный раствор добавили щелочь, выпавший осадок голубого цвета отфильтровали и прокалили. При нагревании продукта прокаливании, который имеет черный цвет, с коксом было получено исходное вещество красного цвета. Напишите уравнения описанных реакций.

13) Раствор, полученный при взаимодействии меди с концентрированной азотной кислотой, выпарили и осадок прокалили. Газообразные продукты полностью поглощены водой, а над твердым остатком пропустили водород. Напишите уравнения описанных реакций.

14) Черный порошок, который образовался при сжигании металла красного цвета в избытке воздуха, растворили в 10%-серной кислоте. В полученный раствор добавили щелочь, и выпавший осадок голубого цвета отделили и растворили в избытке раствора аммиака. Напишите уравнения описанных реакций.

15) Вещество черного цвета получили, прокаливая осадок, который образуется при взаимодействии гидроксида натрия и сульфата меди (II). При нагревании этого вещества с углем получают металл красного цвета, который растворяется в концентрированной серной кислоте. Напишите уравнения описанных реакций.

16) Металлическую медь обработали при нагревании йодом. Полученный продукт растворили в концентрированной серной кислоте при нагревании. Образовавшийся раствор обработали раствором гидроксидом калия. Выпавший осадок прокалили. Напишите уравнения описанных реакций.

17) К раствору хлорида меди (II) добавили избыток раствора соды. Выпавший осадок прокалили, а полученный продукт нагрели в атмосфере водорода. Полученный порошок растворили в разбавленной азотной кислоте. Напишите уравнения описанных реакций.

18) Медь растворили в разбавленной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали серной кислотой до появления характерной голубой окраски солей меди. Напишите уравнения описанных реакций.

19) Медь растворили в концентрированной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали избытком соляной кислоты. Напишите уравнения описанных реакций.

20) Газ, полученный при взаимодействии железных опилок с раствором соляной кислоты, пропустили над нагретым оксидом меди (II) до полного восстановления металла. полученный металл растворили в концентрированной азотной кислоте. Образовавшийся раствор подвергли электролизу с инертными электродами. Напишите уравнения описанных реакций.

21) Йод поместили в пробирку с концентрированной горячей азотной кислотой. Выделившийся газ пропустили через воду в присутствии кислорода. В полученный раствор добавили гидроксид меди (II). Образовавшийся раствор выпарили и сухой твердый остаток прокалили. Напишите уравнения описанных реакций.

22) Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. выпавший синий осадок отфильтровали, просушили и прокалили. Полученное при этом твердое черное вещество в стеклянную трубку, нагрели и пропустили над ним аммиак. Напишите уравнения описанных реакций.

23) Оксид меди (II) обработали раствором серной кислоты. При электролизе образующегося раствора на инертном аноде выделяется газ. Газ смешали с оксидом азота (IV) и поглотили с водой. К разбавленному раствору полученной кислоты добавили магний, в результате чего в растворе образовалось две соли, а выделение газообразного продукта не происходило. Напишите уравнения описанных реакций.

24) Оксид меди (II) нагрели в токе угарного газа. Полученное вещество сожгли в атмосфере хлора. Продукт реакции растворили в в воде. Полученный раствор разделили на две части. К одной части добавили раствор иодида калия, ко второй – раствор нитрата серебра. И в том, и в другом случае наблюдали образование осадка. Напишите уравнения описанных реакций.

25) Нитрат меди (II) прокалили, образовавшееся твердое вещество растворили в разбавленной серной кислоте. Раствор полученной соли подвергли электролизу. Выделившееся на катоде вещество растворили в концентрированной азотной кислоте. Растворение протекает с выделением бурого газа. Напишите уравнения описанных реакций.

26) Щавелевую кислоту нагрели с небольшим количеством концентрированной серной кислоты. Выделившийся газ пропустили через раствор гидроксида кальция. В котором выпал осадок. Часть газа не поглотилась, его пропустили над твердым веществом черного цвета, полученным при прокаливании нитрата меди (II). В результате образовалось твердое вещество темно-красного цвета. Напишите уравнения описанных реакций.

27) Концентрированная серная кислота прореагировала с медью. Выделившийся при газ полностью поглотили избытком раствора гидроксида калия. Продукт окисления меди смешали с расчетным количеством гидроксида натрия до прекращения выпадения осадка. Последний растворили в избытке соляной кислоты. Напишите уравнения описанных реакций.

Источник

Adblock
detector