Химико термическая обработка чугуна назначение виды

Химико-термическая обработка чугуна

Для повышения поверхностной твердости и износостойкости серые чугуны подвергают азотированию. Чаще азотируют серые перлитные чугуны, легированные хромом, молибденом, алюминием. Температура азотирования 550 – 580 о С, время выдержки 30 — 70 часов. Кроме азотирования, повышения поверхностной твердости и износостойкости легированного серого перлитного чугуна можно достигнуть газовым и жидкостным цианированием при температуре 570?С. Для повышения жаростойкости чугунные отливки можно подвергать алитированию, а для получения высокой коррозионной стойкости в кислотах — силицированию.

Термическая обработка сплавов цветных металлов.

Алюминиевые сплавы

Алюминиевые сплавы подвергаются трем видам термической обработки: отжигу, закалке и старению. Основными видами отжига являются: диффузионный, рекристаллизационный и термически упрочненных сплавов.

Гомогенизацию применяют для выравнивания химической микронеоднородности зерен твердого раствора. Для выполнения гомогенизации алюминиевые сплавы нагревают до 450 – 520 о С и выдерживают при этих температурах от 4 до 40 часов; после выдержки — охлаждение вместе с печью или на воздух. В результате этого структура становится более однородной и повышается пластичность.

Рекристаллизационный отжиг для алюминия и сплавов на ег основе применяют гораздо шире, чем для стали. Это объясняется тем, что такие металлы, как алюминий и медь, а так же многие сплавы на их основе, не упрочняются закалкой и повышение механических свойств может быть достигнуто только холодной обработкой давлением, а промежуточной операцией при такой обработке является рекристаллизационный отжиг. Температура рекристаллизационного отжига алюминиевых сплавов 300 – 500 о С выдержка 0,5 — 2 часа.

Отжиг термически упрочненных сплавов применяют для полного снятия упрочнения, он проводится при температурах 350 – 450 о С с выдержкой 1 — 2 часа и последующим достаточно медленным охлаждением.

После закалкипрочность сплава несколько повышается, а пластичность не изменяется. После закалки алюминиевые сплавы подвергают старению, при котором происходит распад пересыщенного твердого раствора.

Деформируемые алюминиевые сплавы

В закаленном состоянии дуралюмины пластичны и легко деформируются. После закалки и естественного или искусственного старения прочность дуралюмина резко повышается.

Литейные алюминиевые сплавы.

Для литейных алюминиевых сплавов используют различные виды термической обработки в зависимости от химического состава. Для упрочнения литейные алюминиевые сплавы подвергают закалке с получением пересыщенного твердого раствора и искусственному старению, а также только закалке без старения с получением в закаленном состоянии устойчивого твердого раствора.

Магниевые сплавы.

Магниевые сплавы, так же как и алюминиевые, подвергают отжигу, закалке и старению. Для выравнивания химической микронеоднородности зерен твердого раствора путем диффузии слитки магниевых сплавов подвергают гомогенизации при температурах 350 – 400 о С с выдержкой 18 — 24 часа. Полуфабрикаты деформируемых магниевых сплавов подвергают рекристаллизационному отжигу при температуре 350 о С, а также при боле низких температурах 150 – 250 о С отжигу для снятия остаточных напряжений.

Магниевые сплавы подвергают закалке, или закалке и искусственному старению. При температуре 20 о С в закаленных магниевых сплавах никаких изменений не происходит, то есть они не подвержены естественному старению.

Медь и медные сплавы

Термическая обработка меди. Деформирование меди сопровождается повышением ее прочности и понижением пластичности. Для повышения пластичности медь подвергают рекристаллизационному отжигу при 500 – 600 о С, в результате которого пластичность резко повышается, а прочность снижается.

Термическая обработка латуней. Они подвергаются только рекристаллизационному отжигу при 600 – 700 о С (для снятия наклепа). Охлаждают латуни при отжиге на воздухе или для ускорения охлаждения и лучшего отделения окалины в воде. Для латунных деталей, имеющих после деформации остаточные напряжения, в условиях влажной атмосферы характерно явление самопроизвольного растрескивания. Чтобы этого избежать латунные детали подвергают низкотемпературному отжигу при 200 — 300 о С, в результате чего остаточные напряжения снимаются, а наклеп остается. Низкотемпературному отжигу особенно необходимо подвергать алюминиевые латуни, которые склонны к самопроизвольному растрескиванию.

Термическая обработка бронз. Для выравнивания химического состава бронзы подвергают гомогенизации при 700 – 750 о С с последующим быстрым охлаждением. Для снятия внутренних напряжений отливки отжигают при 550 о С. Для восстановления пластичности между операциями холодной обработки давлением подвергают рекристаллизационному отжигу при 600 – 700 о С.

Алюминиевые бронзы с содержанием алюминия от 8 до 11%, испытывающие при нагреве и охлаждении фазовую перекристаллизацию, могут подвергаться закалке. В результате закалки повышается прочность и твердость, но снижается пластичность. После закалки следует отпуск при 400 – 650 о С в зависимости о требуемых свойств. Также подвергают гомогенизации, а деформируемые полуфабрикаты — рекристаллизационному отжигу при 650 – 800 о С.

Бериллиевую бронзу закаливают в воде от температуры 760 – 780 о С; при этом избыточная фаза выделиться не успевает, и после закалки сплав состоит из пересыщенного твердого раствора и обладает небольшой твердостью и прочностью и большой пластичностью. После закалки проводится отпуск (старение) при 300 – 350 о С выдержкой 2 часа. Для повышения устойчивости пересыщенного твердого раствора и облегчения закалки бериллиевые бронзы дополнительно легируют никелем.

Титановые сплавы

Титановые сплавы подвергают рекристаллизационному отжигу и отжигу с фазовой перекристаллизацией, атак же упрочнению термической обработкой — закалкой и старением. Для повышения износостойкости и задиростойкости титановые сплавы подвергают азотированию, цементации или окислению.

Рекристаллизационный отжиг применяют для титана и сплавов для снятия наклепа после холодной обработки давлением. Температура рекристаллизационного отжига 520 – 850 о С в зависимости от химического состава сплава и вида полуфабриката.

Отжиг с фазовой перекристаллизацией применяют с целью снижения твердости, повышения пластичности, измельчения зерна, устранения структурной неоднородности. Применяют простой, изотермический и двойной отжиг; температура нагрева при отжиге 750 – 950 о С в зависимости от сплава.

При изотермическом отжиге после выдержки при температуре отжига детали охлаждают до 500 – 650 о С (в зависимости от сплава) в той же печи или переносят в другую печь и выдерживают определенное время, и охлаждают на воздухе. При изотермическом отжиге сокращается продолжительность отжига, а пластичность получается более высокой.

При двойном отжиге детали нагревают до температуры отжига, выдерживают и охлаждают на воздухе. Затем повторно нагреваю до 500 – 650 о С, выдерживают и охлаждают на воздухе. Двойной отжиг по сравнению с изотермическим повышает предел прочности при незначительном снижении пластичности и сокращает длительность обработки.

Из всех видов химико-термической обработки титановых сплавов наибольшее распространение получило азотирование, осуществляемое в среде азота или в смеси азота и аргона при температурах 850 — 950 о С в течении 10 — 50 часов. Детали из титановых сплавов после азотирования обладают хорошими антифрикционными свойствами.

Источник

Назначение и виды химико-термической обработки

Химико-термической обработкой называют процесс, представляющий собой сочетание термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали.

Цель химико-термической обработки: повышение поверхностной твердости, износостойкости, предела выносливости, коррозионной стойкости, жаростойкости (окалиностойкости), кислотоустойчивости.

Наибольшее применение в промышленности получили следующие виды химико-термической обработки: цементация; нитроцементация; азотирование; цианирование; диффузионная металлизация.

Цементация– это процесс поверхностного насыщения углеродом, произведенный с целью поверхностного упрочнения деталей.

В зависимости от применяемого карбюризатора цементация подразделяется на три вида: цементация твердым карбюризатором; газовая цементация (метан, пропан, природный газ).

Газовая цементация. Детали нагревают до 900–950ºС в специальных герметически закрытых печах, в которые непрерывным потоком подают цементующий углеродосодержащий газ [естественный (природный) или искусственный].

Процесс цементации в твердом карбюризаторезаключается в следующем. Детали, упакованные в ящик вместе с карбюризатором (смесь древесного угля с активизатором), нагревают до определенной температуры и в течении длительного времени выдерживают при этой температуре, затем охлаждают и подвергают термической обработке.

Цементации любым из рассмотренных выше способов подвергаются детали из углеродистой и легированной стали с содержанием углерода не более 0,2%. Цементация легированных сталей, содержащих карбидообразующие элементы Cr, W, V, дает особо хорошие результаты: у них, кроме повышения поверхностной твердости и износостойкости, увеличивается также предел усталости.

Азотирование– это процесс насыщения поверхностного слоя различных металлов и сплавов, стальных изделий или деталей азотом при нагреве в соответствующей среде. Повышается твердость поверхности изделия, выносливости, износостойкости, повышение коррозионной стойкости.

Цианирование–.насыщение поверхностного слоя изделий одновременно углеродом и азотом.

В зависимости от используемой среды различают цианирование: в твердых средах; в жидких средах; в газовых средах.

В зависимости от температуры нагрева цианирование подразделяется на низкотемпературное и высокотемпературное.

Цианирование в жидких средах производят в ваннах с расплавленными солями.

Цианирование в газовых средах (нитроцементация ). Процесс одновременного насыщения поверхности детали углеродом и азотом. Для этого детали нагревают в среде, состоящей из цементующего газа и аммиака, то есть нитроцементация совмещает в себе процессы газовой цементации и азотирования.

Диффузионное насыщение металлами и металлоидами

Существуют и применяются в промышленности способы насыщения поверхности деталей различными металлами (алюминием, хромом и др.) и металлоидами (кремнием, бором и др.) Назначение такого насыщения – повышение окалиностойкости, коррозионностойкости, кислотостойкости, твердости и износостойкости деталей. В результате поверхностный слой приобретает особые свойства, что позволяет экономить легирующие элементы.

Алитирование – процесс насыщения поверхностного слоя стали алюминием для повышения жаростойкости (окалиностойкости) и сопротивления атмосферной коррозии.

Алитирование проводят в порошкообразных смесях, в ваннах с расплавленным алюминием, в газовой среде и распыливанием жидкого алюминия.

Хромирование– процесс насыщения поверхностного слоя стали хромом для повышении коррозионной стойкости и жаростойкости, а при хромировании высокоуглеродистых сталей – для повышения твердости и износостойкости.

Силицирование– процесс насыщения поверхностного слоя детали кремнием для повышения коррозионной стойкости и кислотостойкости. Силицированию подвергают детали из низко- и среднеуглеродистых сталей, а также из ковкого и высокопрочного чугунов.

Борирование – процесс насыщения поверхностного слоя детали бором. Назначение борирования – повысить твердость, сопротивление абразивному износу и коррозии в агрессивных средах, теплостойкость и жаростойкость стальных деталей. Существует два метода борирования: жидкостное электролизное и газовое борирование.

Сульфидирование– процесс насыщения поверхностного слоя стальных деталей серой для улучшения противозадирных свойств и повышения износостойкости деталей.

Сульфоцианирование – процесс поверхностного насыщения стальных деталей серой, углеродом и азотом. Совместное влияние серы и азота в поверхностном слое металла обеспечивает более высокие противозадирные свойства и износостойкость по сравнению насыщение только серой.

Источник

Тема: «Основы термической и химико-термической обработки стали и чугунов». Занятие 3.

ЦК КТЭЛА

Раздел I . ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ

Тема 1.5. Основы термической и химико-термической обработки стали и чугунов

8. Отпуск стали, назначение, виды и режимы проведения

9. Обработка стали холодом

10. Термическая обработка чугунов

11. Назначение и сущность химико-термической обработки стали: цементация, азотирование, цианирование, силицирование, хромирование, алитирование

8. Отпуск стали, назначение, виды и режимы проведения

Отпуск — это заключительная операция термической обработки стали, которая заключается в нагреве ниже температуры перлитного превращения (727°С), выдержке и последующем охлаждении. При отпуске формируется окончательная структура стали.

Цель отпуска — получение заданного комплекса механических свойств стали, а также полное или частичное устранение закалочных напряжений.

Различают низкий, средний и высокий отпуск.

Низкий отпуск проводится при температуре 150―200°С. В результате снимаются внутренние напряжения, происходит некоторое увеличение пластичности и вязкости без заметного снижения твердости.

Низкому отпуску подвергают режущий и мерительный инструмент, а также детали, которые должны обладать высокой твердостью и износостойкостью.

При среднем отпуске производится нагрев до 350―450°С. При этом происходит некоторое снижение твердости при значительном увеличении предела упругости и улучшении сопротивляемости действию ударных нагрузок.

Применяется для пружин, рессор, ударного инструмента.

Высокий отпуск проводится при 550―650°С. В результате твердость и прочность снижаются значительно, но сильно возрастают вязкость и пластичность и получается оптимальное для конструкционных сталей сочетание механических свойств.

Применяется для деталей, подвергающихся действию высоких нагрузок.

Термическая обработка, состоящая из закалки и высокого отпуска, называется улучшением. Она является основным видом обработки конструкционных сталей

Искусственное старение — это отпуск при невысоком нагреве. При искусственном старении детали нагревают до температуры 120―150°С и выдерживают при ней в течение 10—35 ч. Длительная выдержка позволяет, не снижая твердости закаленной стали, стабилизировать размеры деталей.

В результате самопроизвольных фазовых превращений в стали и перераспределения остаточных напряжений могут произойти изменения размеров и формы деталей при их эксплуатации или хранении на складе. Эти процессы, протекающие медленно при нормальной температуре, могут интенсифицироваться под влиянием естественной теплоты рук рабочего, сезонных колебаний температуры, нагрева инструмента при снятии стружки либо в результате действия силы трения в подвижных соединениях и т. п.

9. Обработка стали холодом

Обработка холодом состоит в продолжении охлаждения закаленной стали ниже 0°С до температур обычно не ниже – 75°С. В результате обработки холодом повышается твердость и стабилизуются размеры деталей. Наиболее распространенной является охлаждающая среда смеси ацетона с углекислотой.

10. Термическая обработка чугунов

Термическая обработка чугуна. Чугуны, как и сталь, имеют фазовые превращения в твердом состоянии, поэтому для них могут быть использованы те же виды термической обработки, что и для стали.

Однако эффективность упрочняющей обработки чугуна (закалка, отпуск) ввиду превалирующего влияния на свойства чугуна графитовых включений выражена слабее, чем у стали.

Термическая обработка отливок из серых чугунов прежде всего должна уменьшать внутренние напряжения. При этом достигается стабильность размеров и уменьшается брак по трещинообразованию (при механической обработке и в процессе эксплуатации). Для этой цели отливки подвергают низкотемпературному отжигу при 500…550°С в течение 3…5 ч с последующим медленным охлаждением до 200°С со скоростью 30…60°С/ч, а затем на воздухе. Для улучшения обрабатываемости кокильного литья, имеющего отбел, отливки подвергают графитизирующему отжигу при 800…850°С с выдержкой 2…5 ч и с последующим медленным охлаждением.

Для повышения твердости и износостойкости возможна закалка или нормализация чугуна. Нагрев под закалку при 850…930°С. После закалки проводят отпуск, температура которого зависит от требуемой твердости. Однако рациональнее применять для чугунных отливок поверхностную закалку. Закалка отливок из ковкого чугуна перед отжигом преследует цель уменьшения длительности графитизирующего отжига.

Для повышения прочности отливок эффективным мероприятием является изотермическая закалка.

Более упрочняющая термическая обработка применяется для отливок из высокопрочного чугуна.

11. Назначение и сущность химико-термической обработки стали: цементация, азотирование, цианирование, силицирование, хромирование, алитирование

Химико-термическая обработка — это процесс изменения химического состава, структуры и свойств поверхности стальных деталей за счет насыщения ее различными химическими элементами.

При этом достигается значительное повышение твердости и износостойкости поверхности деталей при сохранении вязкой сердцевины.

К видам химико-термической обработки относятся цементация, азотирование, цианирование и др.

Цементация — это процесс насыщения поверхностного слоя стальных деталей углеродом. Цементация производится путем нагрева стальных деталей при 880―950°С в углеродосодержащей среде, называемой карбюризатором.

Различают два основных вида цементации — газовую и твердую. Газовая цементация проводится в газе, содержащем метан СН 4 и оксид углерода СО. Твердая цементация проводится в стальных ящиках, куда укладываются детали вперемешку с карбюризатором. Карбюризатором служит порошок древесного угля с добавкой солей Na 2 СО 3 или ВаСО 3 .

Цементации подвергают стали с низким содержанием углерода (0,1―0,3%). В результате на поверхности концентрация углерода возрастает до 1,0―1,2%. Толщина цементованного слоя составляет 1―2,5 мм.

Цементацией достигается только выгодное распределение углерода по сечению детали. Высокая твердость и износостойкость поверхности получается после закалки, которая обязательно проводится после цементации. Затем следует низкий отпуск. После этого твердость поверхности составляет HRC 60.

Азотированием называется процесс насыщения поверхности стали азотом. При этом повышаются не только твердость и износостойкость, но и коррозионная стойкость. Проводится азотирование при температуре 500―600°С в среде аммиака NH , в течение длительного времени (до 60 ч.).

Аммиак при высокой температуре разлагается с образованием активного атомарного азота, который и взаимодействует с металлом. Твердость стали повышается за счет образования нитридов легирующих элементов. Поэтому азотированию подвергают только легированные стали. Наиболее сильно повышают твердость такие легирующие элементы, как хром, молибден, алюминий, ванадий. Глубина азотированного слоя составляет 0,3—0,6 мм, твердость поверхностного слоя по Виккерсу доходит до HV 1200 (при цементации HV 900).

К преимуществам азотирования перед цементацией следует отнести отсутствие необходимости в дополнительной термообработке, более высокую твердость и износостойкость, высокую коррозионную стойкость поверхности.

Недостатками являются низкая скорость процесса и необходимость применения дорогих легированных сталей.

Цианирование (нитроцементация) — это процесс одновременного насыщения поверхности стали углеродом и азотом. Проводится цианирование в расплавах цианистых солей NaCN или KCN или в газовой среде, содержащей смесь метана СН 4 и аммиака NH . Различают низкотемпературное и высокотемпературное цианирование.

Низкотемпературное цианирование проводится при температуре 500―600°С. При этом преобладает насыщение азотом. Глубина цианированного слоя составляет 0,2―0,5 мм, твердость поверхности — HV 1000.

При высокотемпературном цианировании температура составляет 800―950°С. Преобладает насыщение углеродом. Глубина поверхностного слоя составляет 0,6—2,0 мм. После высокотемпературного цианирования следует закалка с низким отпуском. Твердость после термообработки составляет HRC 60.

Диффузионная металлизация — это процесс диффузионного насыщения поверхностных слоев стали различными металлами (алюминием, хромом, кремнием, бором). После диффузионной металлизации детали приобретают ряд ценных свойств, например, жаростойкость, окалиностойкость и др.

Алитирование это процесс диффузионного насыщения поверхностного слоя алюминием. Проводится в порошкообразных смесях или расплавленном алюминии. Толщина алитированного слоя составляет 0,2—1,0 мм; концентрация алюминия в нем до 30%. Алитирование применяют для повышения коррозионной стойкости и жаростойкости деталей из углеродистых сталей, работающих при высокой температуре.

Хромирование это процесс диффузионного насыщения поверхности хромом. Толщина слоя составляет 0,2 мм. Хромирование используют для изделий из сталей любых марок. При хромировании обеспечивается высокая стойкость против газовой коррозии до 800°С, окалиностойкость и износостойкость деталей в агрессивных средах (морская вода, кислоты).

Силицирование это процесс диффузионного насыщения поверхности кремнием. Толщина слоя составляет 0,3—1,0 мм. Силицирование обеспечивает наряду с повышенной износостойкостью высокую коррозионную стойкость стальных изделий в кислотах и морской воде. Применяется для деталей, используемых в химической и нефтяной промышленности.

Борирование — это процесс диффузионного насыщения поверхности бором. Толщина борированного слоя достигает 0,4 мм. Борирование придает поверхностному слою исключительно высокую твердость, износостойкость и устойчивость против коррозии в различных средах.

Тема 1.5. Занятие № 3 . Основы термической и химико-термической обработки стали и чугунов 4

Источник