Хлорид олова нитрат ртути соляная кислота

Реакция с хлоридом ртути (II)

Олово (II) восстанавливает соединения ртути (II) до металлической ртути, выделяющейся, как и металлический висмут, в виде черного осадка. Реакция протекает в две стадии. Вначале ртуть (II) восстанавливается до ртути (I), а затем — до металлической ртути:

Методика. В пробирку вносят 3-5 капель солянокислого раствора хлорида олова(II) и прибавляют 2-3 капли раствора хлорида ртути(II) — сулемы НgСl2. Выпадает белый осадок каломели Нg2Сl2, который постепенно чернеет за счет выделяющейся металлической ртути.

2. Аналитические реакции катиона свинца Рb 2+

Реакция с НС1 (хлорид-ионами)

Катионы свинца образуют с НС1 (хлорид-ионами) белый осадок хлорида свинца РbCl2:

Хлорид свинца растворим в воде, особенно при нагревании, поэтому катионы Рb 2+ осаждаются из растворов хлорид-ионами не полностью. Осадок хлорида свинца растворяется в горячей воде; при охлаждении раствора из него снова выпадает хлорид свинца, но уже в форме игл. Из разбавленных щелочных растворов выпадает осадок гидроксида свинца; из концентрированных щелочных растворов осадок хлорида свинца не выпадает.

Методика. В пробирку вносят 3-4 капли раствора нитрата свинца Рb(NO3)2, прибавляют 3-4 капли раствора соляной кислоты. Выпадает белый осадок хлорида свинца. К полученной смеси приливают 1,5 мл дистиллированной воды и нагревают до растворения осадка. При охлаждении раствора из него снова выпадает осадок хлорида свинца в виде игл.

Реакция с KI (иодид-ионами)

Катионы свинца при взаимодействии в растворах с KI (иодид-ионами) образуют желтый осадок иодида свинца, растворимый в избытке реактива с образованием тетраиодоплюмбат (II)-ионов [РbI4] 2- :

Осадок иодида свинца растворяется при нагревании в воде, в растворе уксусной кислоты. При охлаждении раствора из него снова выпадают красивые золотисто-желтые кристаллы иодида свинца (реакция «золотого дождя»).

Методика. В пробирку вносят 3-5 капель раствора нитрата свинца Рb(NO3)2, прибавляют 3 капли раствора иодида калия KI. Выпадает желтый осадок иодида свинца. К смеси прибавляют несколько капель воды, подкисленной уксусной кислотой, и нагревают до полного растворения осадка. При медленном охлаждении пробирки выпадают красивые блестящие золотисто-желтые чешуйчатые кристаллы иодида свинца.

3. Реакция с K2CrO4 (хромат-ионами)

Катионы свинца образуют с K2CrO4 (хромат-ионами) в уксуснокислой среде желтый кристаллический осадок хромата свинца РbСrО4

Осадок хромата свинца не растворяется в уксусной и разбавленной азотной кислотах, в водном аммиаке, но растворяется в щелочах с образованием комплексов [Рb(ОН)4] 2- :

Методика. В пробирку вносят 2-3 капли раствора Рb(СН3СОО)2 , 2-3 капли раствора ацетата натрия и 3 капли раствора хромата калия К2СrО4. Выпадает желтый кристаллический осадок хромата свинца.

4. Реакция с Na2SO4 (сульфат-ионами)

Катионы Рb 2+ при взаимодействии в растворе с сульфат-ионами SO4 2- образуют белый осадок сульфата свинца РbSO4:

Методика. В пробирку вносят 5 капель раствора нитрата свинца, прибавляют столько же капель раствора сульфата натрия. Выпадает белый осадок сульфата свинца.

Реакция сo щелочами

Соединения свинца при взаимодействии с щелочами (недостаток) выделяют белый осадок гидроксида свинца Pb(ОН)2, растворимый в избытке щелочи.

Осадок Pb(ОН)2 растворяется в кислотах.

Методика. В пробиркe вносят 2-3 капли раствора соли свинца и прибавляют по каплям раствор NaОН. Выпадает белый осадок Pb(ОН)2, который растворяется в избытке гидроксида натрия и кислотах.

3. Аналитические реакции катиона алюминия Аl 3+

Реакция со щелочами

Катионы Аl 3+ при реакциях со щелочами в растворах дают белый осадок гидроксида алюминия А1(ОН)3, который растворяется в избытке щелочи с образованием гидроксокомплекса [Al(OH)6] 3- :

Читайте также:  Пайка оловом стальных деталей

Осадок А1(ОН)3 растворяется в кислотах, но не растворяется в аммиаке.

Методика. В пробирку вносят 3-5 капель раствора хлорида алюминия АlСl3 и прибавляют по каплям раствор NаОН. Выпадает белый oсадок гидроксида алюминия. Осадок взболтать и разлить на две пробирки. В одну продолжают прибавление по каплям раствора NаОН, а в другую пробирку добавляют НС1. Осадок растворяется.

Реакция с аммиаком

Катионы Аl 3+ образуют с аммиаком, как и сo щелочами, белый аморфный осадок гидроксида алюминия:

B избытке раствора аммиака осадок не растворяется.

Методика — аналогична предыдущей.

Реакция с ализарином

Ализарин — 1,2-диоксиантрахинон, а также некоторые его производные при реакциях с катионами Аl 3+ в аммиачной
среде образуют малорастворимые комплексные соединения ярко-красного цвета, называемые «алюминиевыми лаками». Реакцию выполняют капельным методом на фильтровальной бумаге.

Методика. На лист фильтровальной бумаги наносят 1-2 капли раствора соли алюминия. Бумагу держат 1-2 минуты в парах аммиака – над склянкой с концентрированным раствором аммиака. Пары аммиака, соприкасаясь с влажным пятном, образуют на бумаге гидроксид алюминия. На пятно наносят каплю раствора ализарина и снова держат бумагу в
парах аммиака. Пятно, вначале, окрашивается в фиолетовый цвет (цвет фона ализарина). Бумагу подсушивают, наносят на нее 1-2 капли раствора уксусной кислоты и снова высушивают. Пятно становится розово-красным.

Результаты выполнения лабораторных работ по изучению характерных реакций ионов Р — элементов заносятся в протокол, который оформляется на двух страницах рабочей тетради по форме:

Источник

Все соединения ртути (II) сильно ядовиты, поэтому при работе с ними следует принимать меры предосторожности!

Катионы шестой аналитической группы катионов

1. Общая характеристика группы.

2. Частные реакции катионов второй аналитической группы.

3) Реакции на катион ртути (II).

К шестой аналитической группе катионов относятся катионы Cu 2+ , Hg 2+ , Co 2+ , Ni 2+ . Cd 2+ Хлориды, сульфаты и нитраты этих катионов хорошо растворимы в воде. Растворы солей меди (II) окрашены в голубой цвет, кобальта (II) — в розовый, а никеля (II) — в зеленый.

Гидроксиды катионов этой группы являются труднорастворимыми слабыми электролитами, гидроксиды Сu(ОН)2 и Hg(OH)2 неустойчивы и разлагаются на соответствующий оксид и воду, Сu(ОН)2 при нагревании, a Hg(OH)2 при обычной температуре.

Соли катионов шестой аналитической группы подвергаются гидролизу в водных растворах.

Для катионов этой группы характерны реакции комплексообразования. Растворы аммиака осаждают Сu, Hg, Со, Ni, Cd в виде гидрооксидов. При избытке аммиака они растворяются, образуют комплексные соединения:

Медь, ртуть и кобальт имеют переменную степень окисления, поэтому для них характерны окислительно-восстановительные реакции. Некоторые из этих реакций используются для открытия отдельных ионов. Например, ион Hg 2+ открывают восстановлением его до Hg(I) и затем до свободной ртути действием SnС12.

Медь принадлежит к числу микроэлементов, очень малые количества которых необходимы для нормальной жизнедеятельности живых организмов. Удобрения, содержащие медь, способствуют росту растений на некоторых малоплодородных почвах, повышают их устойчивость против засухи и холода. В человеческом организме медь обнаружена в составе эритроцитов. Она оказывает заметное влияние на повышение сопротивляемости организма к вредному воздействию некоторых факторов внешней среды.

Реакции катиона ртути (II) Hg 2+

1. Гидроксиды щелочных металлов NaOH и КОН осаждают из растворов солей ртути (II) желтый осадок оксида ртути:

Hg 2+ + 2ОН — → HgO↓+ Н2О.

Осадок легко растворим в кислотах. Реакция является фармакопейной.

2. Иодид калия KI с солями ртути (II) дает красный осадок иодида ртути (II):

Читайте также:  Как обозначается олово химия

Осадок растворяется в избытке реактива с образованием бесцветной комплексной соли:

Реакция часто используется для обнаружения ионов Hg 2+ , хотя ионы Сu 2+ мешают определению. Реакция является фармакопейной.

3. Хлорид олова (II) SnCl2 восстанавливает соли ртути (II) до нерастворимого хлорида ртути (I) белого цвета:

2Hg 2+ + Sn 2+ + 2Сl — → Hg2Cl2↓ + Sn 4+

Если реактив брать в избытке, то происходит дальнейшее восстановление ртути до металлической:

Этой реакцией пользуются для обнаружения иона ртути (II).

4. Реакция с сульфид — ионом. Реакция является фармакопейной. Катионы Hg 2+ осаждаются из водных растворов сульфид – ионом в виде черно- коричневого осадка. Реакция протекает в несколько стадий. Вначале образуется белый осадок, постепенно изменяющий окраску через желто- красную и бурую на черно- коричневую при избытке сульфид – ионов.

Сульфид ртути (II) не растворяется в разбавленной азотной кислоте, но растворим в царской водке.

Реакции катиона меди (II) Сu 2+

1. Гидроксиды щелочных металлов NaOH и КОН из растворов солей меди (II) выделяют на холоду голубой осадок гидроксида меди (II):

При кипячении смеси раствора с осадком гидроксид меди (II) разлагается, теряя воду:

Осадок растворим в концентрированном растворе аммиака:

2. Водный раствор аммиака, взятый в избытке, образует с солями меди (II) комплексное соединение меди (II) ярко — синего цвета:

Реакция является наиболее характерной для иона Сu 2+ и чаще всего применяется для его обнаружения. Проведению реакции мешают ионы Ni 2+ и Со 2+ .

Схема анализа катионов I-VI аналитических групп представлена на рисунке 6

Рис. 6. Схема анализа катионов I-VI аналитических групп

3. Гексацианоферрат (II) калия. K4Fe(CN)6] осаждает из нейтральных или слабокислых растворов солей меди(II) красно – бурый осадок

осадок не растворяется в разбавленных кислотах, но растворяется в 25% растворе аммиака.

4. Иодид калия или натрия окисляется солями меди (II) до свободного иода:

5. Реакция восстановления меди (II) до металлической меди. Реакция фармакопейная. Металлы, расположенные в ряду напряжений металлов леве меди, восстанавливают катион Cu 2+ до металлической меди. Чаще для этой цели используют металлический алюминий, цинк, железо.

Cu 2+ + Zn → Cu + Zn 2+

Cu 2+ + Fe → Cu + Fe 2+

Схема систематического анализа катионов всех шести аналитических групп представлена на рисунке 6.

Тема: «Анионы»

1. Общая характеристика анионов.

Анионы образуются в основном p-элементами и некоторыми d- элементами (Cr, Mn). Высокой способностью к образованию анионов обладают p-элементы, расположенные в верхнем правом углу Периодической системы Д. И. Менделеева. Они имеют переменную степень окисления и способны к образованию кислот, причем сила кислот возрастает с увеличением степени окисления.

Классификация анионов основывается на различной растворимости солей бария и серебра соответствующих кислот, классификация анионов представлена в таблице 2

Первая группа анионов: фосфат-ион РО4 3 — сульфат-ион SO4 2- , сульфит-ион SO3 2 — , карбонат-ион СО3 2- , тиосульфат-ион S2O3 2 — , метаборат-ион ВО2 — (или тетраборат-ион В4О7 2 — ) и оксалат-ион С2О4 2 — . Перечисленные ионы образуют с ионами бария Ва 2+ труднорастворимые в воде соли. Групповым реагентом является ВаСl2 в нейтральной или слабощелочной среде.

Вторая группа анионов: хлорид-ион С1 — , бромид-ион Вг — , иодид-ион I — , сульфид-ион S 2 — . Анионы второй группы образуют с ионами Ag + труднорастворимые в воде и нерастворимые в разбавленной азотной кислоте соли. Групповым реагентом является AgNO3 в присутствии разбавленной азотной кислоты.

Третья группа анионов: нитрат-ион NO3 — , нитрит-ион NO2 — и ацетат-ион СН3СОО — . Серебряные и бариевые соли этих анионов хорошо растворимы в воде. Группового реагента нет.

Читайте также:  Как растопить олово для пайки проводов

Источник

Хлорид ртути I

Хлорид диртути 2+
Систематическое название Хлорид диртути 2+
Другие названия Каломель, дихлорид диртути, хлорид ртути I, хлористая ртуть
Химическая формула Hg2Cl2
Внешний вид твёрдое вещество белого цвета
Молярная масса 472,09 г/моль
Температура плавления 525 °C (при избыточном давлении)
Температура возгонки 383,7 °C
Температура разложения 400 °C
Плотность 7,15 г/см³
Твёрдость по Моосу 1,5—2
Растворимость в воде 3,4⋅10 −5 г/100 мл
Произведение растворимости 1,3⋅10 −18
LD 50 210 мг/кг
ПДК в воздухе рабочей зоны 0,2 мг/м³
в атмосферном воздухе 0,0003 мг/м³
в воде водоёмов 0,001 мг/л
Кристаллическая решётка тетрагональная
Стандартная энтальпия образования −266 кДж/моль
Стандартная молярная энтропия +192 Дж/(К·моль)
Стандартная энергия образования Гиббса −211 кДж/моль
Регистрационный номер CAS 10112-91-1
Регистрационный номер EC 233-307-5
R-фразы R22 , R36/37/38 , R50/53
S-фразы S13 , S24/25 , S46 , S60 , S61
H-фразы H302; H315; H319; H335; H410
P-фразы P273; P302+P352; P304+P340; P305+P351+P338
Пиктограммы опасности
Пиктограммы опасности СГС
Где это не указано, данные приведены при стандартных условиях (25 °C, 100 кПа).

Хлорид ртути I, также каломель, дихлорид диртути, Хлорид диртути 2+ — неорганическое вещество с формулой Hg2Cl2 , соединение ртути и хлора. Относится к классу бинарных соединений, может рассматриваться как димер соли одновалентной ртути и соляной кислоты (см. кластер). Кристаллическое вещество белого цвета.

Содержание

Нахождение в природе

Хлорид ртути I в природе встречается в виде минерала каломели (устаревшее название — роговая ртуть). Цвет минерала от светло-жёлтого до коричневого, твёрдость по шкале Мооса 1,5 — 2.

Физические свойства

Хлорид ртути I — кристаллическое вещество белого цвета, на свету темнеет. Легколетучий, нерастворим в воде (растворимость 3,4⋅10 −4 г/л), этаноле, эфире; растворяется в бензоле, пиридине. Не образует кристаллогидратов. Возгоняется с разложением при температуре 383—400 °C

Кристаллическая решётка тетрагональной сингонии, пространственная группа I 4/mmm, параметры ячейки a = 0,445 нм , c = 1,089 нм , Z = 2 .

Химические свойства

Хлорид ртути I не реагирует со щелочами.

Окисляется до соединений ртути II:

Восстанавливается до металлической ртути сильными восстановителями, например хлоридом олова II в соляной кислоте:

Под действием хлора каломель окисляется с образованием сулемы:

Дисмутирует на металлическую ртуть и соединения ртути II:

  • в разбавленных кислотах (медленно) или при нагревании выше 400 °C

Hg2Cl2 ⟶ HgCl2 + Hg

  • в растворе аммиака образуется так называемый белый неплавкий преципитат

Hg2Cl2 + 2 (NH3 ⋅ H2O) ⟶ [Hg(NH2)Cl] ↓ + Hg ↓ + NH4Cl + 2 H2O

При температуре возгонки в газовой фазе частично разлагается с образованием мономера:

Получение

Хлорид ртути I может быть получен:

  • с помощью реакций ионного обмена, например осаждением хлоридом калия из раствора динитрата диртути I в разбавленной азотной кислоте

Hg2(NO3)2 + 2 KCl ⟶ Hg2Cl2 ↓ + 2 KNO3

  • взаимодействием хлорида ртути II и металлической ртути при высокой температуре

HgCl2 + Hg → 250−300∘C Hg2Cl2

  • взаимодействием хлорида ртути II с цианидом ртути II:

HgCl2 + Hg(CN)2 → 70−120∘C Hg2Cl2 + C2N2

Применение

Хлорид ртути I используется для изготовления каломельного электрода сравнения, как антисептик, в качестве катализатора, для синтеза ртуть органических соединений.

Токсичность

Хлорид ртути I является среднетоксичным веществом для теплокровных существ: LD50 для крыс 210 мг/кг (пероральная), 1500 мг/кг (дермальная). Вызывает раздражение кожи, слизистых оболочек, сильное раздражение глаз. При попадании внутрь организма главным образом поражаются печень, почки, ЖКТ, ЦНС. Очень токсичен для водных организмов: LC50 для Daphnia magna составляет 0,002 мг/л в течение 48 ч

ПДК (в пересчёте на ртуть) составляет: в воздухе рабочей зоны 0,2 мг/м³, в атмосферном воздухе 0,0003 мг/м³, в воде водоёмов 0,001 мг/л.

Источник