- Степень окисления олова
- Общие сведения о степени окисления олова
- Степень окисления олова в соединениях
- Примеры решения задач
- Олово: степени окисления и реакции с ним
- Применение в промышленности
- Физические свойства олова
- Получение олова
- Химические свойства олова
- Олово Sn
- Электронная схема олова
- Степень окисления олова
- Ионы олова
- Валентность Sn
- Квантовые числа Sn
- Энергия ионизации
- Максимальная степень окисления олова
Степень окисления олова
Общие сведения о степени окисления олова
При нагревании палочки олова слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга. Олово обладает мягкостью и тягучестью и легко может быть прокатано в тонкие листы (станиоль).
Кроме обычного белого олова (тетрагональная кристаллическая решетка) существует серое олово (кубическая кристаллическая решетка), характеризующееся меньшим значением плотности. Белое олово устойчиво при температурах выше 14 o С, а серое – при температурах ниже 14 o С.
Степень окисления олова в соединениях
Олово проявляет отрицательную степень окисления (-2) в соединениях с s-элементами Iи II групп, которые носят названия станниды: Mg2Sn -2 , Na2Sn -2 .
Степень окисления (+4) наиболее характерна для олова. Она проявляется в оксиде, галогенидах, сульфиде и нитриде: Sn +4 O2, Sn +4 Cl4, Sn +4 F4, Sn +4 Br4, Sn +4 S2, Sn +4 3N4.
Известно, что олово также проявляет в соединениях степень окисления (+2): Sn +2 O, Sn +2 (OH)2, Sn +2 S, Sn +2 Cl2 и т.д.
Олово также существует в виде простого вещества степень окисления,в котором равна нулю.
Примеры решения задач
Задание | Максимально возможную степень окисления азот проявляет в а) нитриде кальция; б) нитрите аммония; в) хлориде аммония; г) нитрате цинка? |
Решение | Для того, чтобы дать правильный ответ на поставленный вопрос будем поочередно определять степень окисления азота в каждом из предложенных соединений с помощью уравнения электронейтральности. |
а) Формула нитрида кальция – Ca3N2. Степень окисления кальция всегда равна (+2). Примем за «х» значение степени окисления азота:
б) Формула нитрита аммония –NH4NO2. Степень окисления азота в составе иона аммония равна (-3), а в составе нитрит-иона – (+3).
в) Формула хлорида аммония –NH4Cl. Как было уже сказано в варианте (б), степень окисления азота в составе иона аммония равна (-3).
г) Формула нитрата цинка – Zn(NO3)2.Степень окисления цинка всегда равна (+2). Степень окисления кислорода в данном случае равна (-2). Примем за «х» значение степени окисления азота:
Это верный ответ, поскольку максимально возможная степень окисления азота равна (+5).
Задание | В каком ряду все элементы могут проявлять степень окисления (-3):
|
Решение | Значение степени окисления (-3) – это низшая степень окисления, которая определяется как разница между номером группы в Периодической системе Д.И. Менделеева, в которой расположен химический элемент и числом 8. Следовательно, все три элемента должны находиться в V группе. Это фосфор, азот и сурьма – вариант 4. |
Ответ | Вариант 4. |
Понравился сайт? Расскажи друзьям! |
Символ | Sn |
Номер | 50 |
Атомный вес | 118.7100000 |
Латинское название | Stannum |
Русское название | Олово |
Как самостоятельно построить электронную конфигурацию? Ответ здесь
Электронная схема олова
Sn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 2
Короткая запись:
Sn: [Kr]5s 2 4d 10 5p 2
Одинаковую электронную конфигурацию имеют атом олова и Te +2 , I +3 , Xe +4
Порядок заполнения оболочек атома олова (Sn) электронами: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p.
На подуровне ‘s’ может находиться до 2 электронов, на ‘s’ — до 6, на ‘d’ — до 10 и на ‘f’ до 14
Олово имеет 50 электронов, заполним электронные оболочки в описанном выше порядке:
2 электрона на 1s-подуровне
2 электрона на 2s-подуровне
6 электронов на 2p-подуровне
2 электрона на 3s-подуровне
6 электронов на 3p-подуровне
2 электрона на 4s-подуровне
10 электронов на 3d-подуровне
6 электронов на 4p-подуровне
2 электрона на 5s-подуровне
10 электронов на 4d-подуровне
2 электрона на 5p-подуровне
Степень окисления олова
Атомы олова в соединениях имеют степени окисления 4, 2, -4.
Степень окисления — это условный заряд атома в соединении: связь в молекуле между атомами основана на разделении электронов, таким образом, если у атома виртуально увеличивается заряд, то степень окисления отрицательная (электроны несут отрицательный заряд), если заряд уменьшается, то степень окисления положительная.
Ионы олова
Валентность Sn
Атомы олова в соединениях проявляют валентность IV, II.
Валентность олова характеризует способность атома Sn к образованию хмических связей. Валентность следует из строения электронной оболочки атома, электроны, участвующие в образовании химических соединений называются валентными электронами. Более обширное определение валентности это:
Число химических связей, которыми данный атом соединён с другими атомами
Валентность не имеет знака.
Квантовые числа Sn
Квантовые числа определяются последним электроном в конфигурации, для атома Sn эти числа имеют значение N = 5, L = 1, Ml = 0, Ms = ½
Видео заполнения электронной конфигурации (gif):
Результат:
Энергия ионизации
Чем ближе электрон к центру атома — тем больше энергии необходимо, что бы его оторвать. Энергия, затрачиваемая на отрыв электрона от атома называется энергией ионизации и обозначается Eo. Если не указано иное, то энергия ионизации — это энергия отрыва первого электрона, также существуют энергии ионизации для каждого последующего электрона.
Перейти к другим элементам таблицы менделеева
Источник
Максимальная степень окисления олова
ОЛОВО (лат. Stannum), Sn, химический элемент с атомным номером 50, атомная масса 118,710. О происхождении слов «stannum» и «олово» существуют различные догадки. Латинское «stannum», которое иногда производят от саксонского «ста» — прочный, твердый, первоначально означало сплав серебра и свинца. «Оловом» в ряде славянских языков называли свинец. Возможно, русское название связано со словами «ол», «оловина» — пиво, брага, мед: сосуды из олова использовались для их хранения. В англоязычной литературе для названия олова используется слово tin. Химический символ олова Sn читается «станнум».
Природное олово состоит из девяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96% по массе), 114 (0,66%), 115 (0,35%), 116 (14,30%), 117 (7,61%), 118 (24,03%), 119 (8,58%), 120 (32,85%), 122 (4,72%), и одного слабо радиоактивного олова-124 (5,94%). 124 Sn — b-излучатель, его период полураспада очень велик и составляет T1/2 = 10 16 –10 17 лет. Олово расположено в пятом периоде в IVА группе периодической системы элементов Д. И. Менделеева. Конфигурация внешнего электронного слоя 5s 2 5p 2 . В своих соединениях олово проявляет степени окисления +2 и +4 (соответственно валентности II и IV).
Металлический радиус нейтрального атома олова 0,158 нм, радиусы иона Sn 2+ 0,118 нм и иона Sn 4+ 0,069 нм (координационное число 6). Энергии последовательной ионизации нейтрального атома олова равны 7,344 эВ, 14,632, 30,502, 40,73 и 721,3 эВ. По шкале Полинга электроотрицательность олова 1,96, то есть олово находится на условной границе между металлами и неметаллами.
Физические и химические свойства: простое вещество олово полиморфно. В обычных условиях оно существует в видеb-модификации (белое олово), устойчивой выше 13,2°C. Белое олово — это серебристо-белый, мягкий, пластичный металл, обладающий тетрагональной элементарной ячейкой, параметры a = 0.5831, c = 0.3181 нм. Координационное окружение каждого атома олова в нем — октаэдр. Плотность b-Sn 7,228 г/см 3 . Температура плавления 231,9°C, температура кипения 2270°C.
При охлаждении, например, при морозе на улице, белое олово переходит в a-модификацию (серое олово). Серое олово имеет структуру алмаза (кубическая кристаллическая решетка с параметром а = 0,6491 нм). В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переход b-Sn a-Sn сопровождается увеличением удельного объема на 25,6% (плотность a-Sn составляет 5,75 г/см 3 ), что приводит к рассыпанию олова в порошок. В старые времена наблюдавшееся во время сильных холодов рассыпание оловянных изделий называли «оловянной чумой». В результате этой «чумы» пуговицы на обмундировании солдат, их пряжки, кружки, ложки рассыпались, и армия могла потерять боеспособность. (Подробнее об «оловянной чуме» см. интересные факты об олове, ссылка внизу этой страницы).
Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, b-Sn — металл, а a-Sn относится к числу полупроводников. Ниже 3,72 К a-Sn переходит в сверхпроводящее состояние. Стандартный электродный потенциал E °Sn 2+ /Sn равен –0.136 В, а E пары °Sn 4+ /Sn 2+ 0.151 В.
При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной пленки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150°C:
При нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:
С концентрированной соляной кислотой олово медленно реагирует:
Возможно также образование хлороловянных кислот составов HSnCl3, H2SnCl4 и других, например:
В разбавленной серной кислоте олово не растворяется, а с концентрированной — реагирует очень медленно.
Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте образуется оловянная кислота b-SnO2·nH2O (иногда ее формулу записывают как H2SnO3). При этом олово ведет себя как неметалл:
При взаимодействии с разбавленной азотной кислотой олово проявляет свойства металла. В результате реакции образуется соль нитрат олова (II):
При нагревании олово, подобно свинцу, может реагировать с водными растворами щелочей. При этом выделяется водород и образуется гидроксокомплекс Sn (II), например:
Гидрид олова — станнан SnH4 — можно получить по реакции:
Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0°C.
Олову отвечают два оксида SnO2(образующийся при обезвоживании оловянных кислот) и SnO. Последний можно получить при слабом нагревании гидроксида олова (II) Sn(OH)2 в вакууме:
При сильном нагреве оксид олова (II) диспропорционирует:
При хранении на воздухе монооксид SnO постепенно окисляется:
При гидролизе растворов солей олова (IV) образуется белый осадок — так называемая a-оловянная кислота:
Свежеполученная a-оловянная кислота растворяется в кислотах и щелочах:
При хранении a-оловянная кислота стареет, теряет воду и переходит в b-оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO–Sn группировок при стоянии и замене их на более инертные мостиковые –Sn–O–Sn– связи.
При действии на раствор соли Sn (II) растворами сульфидов выпадает осадок сульфида олова (II):
Этот сульфид может быть легко окислен до SnS2 раствором полисульфида аммония:
Образующийся дисульфид SnS2растворяется в растворе сульфида аммония (NH4)2S:
Четырехвалентное олово образует обширный класс оловоорганических соединений, используемых в органическом синтезе, в качестве пестицидов и других.
История открытия: когда человек впервые познакомился с оловом точно сказать нельзя. Олово и его сплавы известны человечеству с древнейших времен. Упоминание об олове есть в ранних книгах Ветхого Завета. Сплавы олова с медью, так называемые оловянные бронзы, по-видимому, стали использоваться более чем за 4000 лет до нашей эры. А с самим металлическим оловом человек познакомился значительно позже, примерно около 800 года до нашей эры.
Из чистого олова в древности изготовляли посуду и украшения, очень широко применяли изделия из бронзы.
Нахождение в природе:олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Содержание олова в земной коре составляет, по разным данным, от 2·10 –4 до 8·10 –3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).
Получение: для добычи олова в настоящее время используют руды, в которых его содержание равно или немного выше 0,1%. На первом этапе руду обогащают (методом гравитационной флотации или магнитной сепарации). Таким образом удается повысить содержание олова в руде до 40-70%. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Затем полученный таким образом оксид SnO2восстанавливают углем или алюминием (цинком) в электропечах:
Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.
Применение: важное применение олова — лужение железа и получение белой жести, которая используется в консервной промышленности. Для этих целей расходуется около 33% всего добываемого олова. До 60% производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. Олово способно прокатываться в тонкую фольгу — станиоль, такая фольга находит применение при производстве конденсаторов, органных труб, посуды, художественных изделий. Олово применяют для нанесения защитных покрытий на железо и другие металлы, а также на металлические изделия (лужение). Дисульфид олова SnS2применяют в составе красок, имитирующих позолоту («сусальное золото»).
Искусственный радионуклид олова 119 Sn — источник v-излучения в мессбауэровской спектроскопии.
Физиологическое действие:о роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1-2)·10 –4 % олова, а его ежедневное поступление с пищей составляет 0,2-3,5 мг. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц, пыли. При воздействии паров или пыли олова может развиться станноз — поражение легких. Очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м 3 , ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г.
Источник
Adblockdetector