Напишите уравнение для реакции оксида олова ii с соляной кислотой
ОЛОВО (лат. Stannum), Sn, химический элемент с атомным номером 50, атомная масса 118,710. О происхождении слов «stannum» и «олово» существуют различные догадки. Латинское «stannum», которое иногда производят от саксонского «ста» — прочный, твердый, первоначально означало сплав серебра и свинца. «Оловом» в ряде славянских языков называли свинец. Возможно, русское название связано со словами «ол», «оловина» — пиво, брага, мед: сосуды из олова использовались для их хранения. В англоязычной литературе для названия олова используется слово tin. Химический символ олова Sn читается «станнум».
Природное олово состоит из девяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96% по массе), 114 (0,66%), 115 (0,35%), 116 (14,30%), 117 (7,61%), 118 (24,03%), 119 (8,58%), 120 (32,85%), 122 (4,72%), и одного слабо радиоактивного олова-124 (5,94%). 124 Sn — b-излучатель, его период полураспада очень велик и составляет T1/2 = 10 16 –10 17 лет. Олово расположено в пятом периоде в IVА группе периодической системы элементов Д. И. Менделеева. Конфигурация внешнего электронного слоя 5s 2 5p 2 . В своих соединениях олово проявляет степени окисления +2 и +4 (соответственно валентности II и IV).
Металлический радиус нейтрального атома олова 0,158 нм, радиусы иона Sn 2+ 0,118 нм и иона Sn 4+ 0,069 нм (координационное число 6). Энергии последовательной ионизации нейтрального атома олова равны 7,344 эВ, 14,632, 30,502, 40,73 и 721,3 эВ. По шкале Полинга электроотрицательность олова 1,96, то есть олово находится на условной границе между металлами и неметаллами.
Физические и химические свойства: простое вещество олово полиморфно. В обычных условиях оно существует в видеb-модификации (белое олово), устойчивой выше 13,2°C. Белое олово — это серебристо-белый, мягкий, пластичный металл, обладающий тетрагональной элементарной ячейкой, параметры a = 0.5831, c = 0.3181 нм. Координационное окружение каждого атома олова в нем — октаэдр. Плотность b-Sn 7,228 г/см 3 . Температура плавления 231,9°C, температура кипения 2270°C.
При охлаждении, например, при морозе на улице, белое олово переходит в a-модификацию (серое олово). Серое олово имеет структуру алмаза (кубическая кристаллическая решетка с параметром а = 0,6491 нм). В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переход b-Sn a-Sn сопровождается увеличением удельного объема на 25,6% (плотность a-Sn составляет 5,75 г/см 3 ), что приводит к рассыпанию олова в порошок. В старые времена наблюдавшееся во время сильных холодов рассыпание оловянных изделий называли «оловянной чумой». В результате этой «чумы» пуговицы на обмундировании солдат, их пряжки, кружки, ложки рассыпались, и армия могла потерять боеспособность. (Подробнее об «оловянной чуме» см. интересные факты об олове, ссылка внизу этой страницы).
Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, b-Sn — металл, а a-Sn относится к числу полупроводников. Ниже 3,72 К a-Sn переходит в сверхпроводящее состояние. Стандартный электродный потенциал E °Sn 2+ /Sn равен –0.136 В, а E пары °Sn 4+ /Sn 2+ 0.151 В.
При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной пленки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150°C:
При нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:
С концентрированной соляной кислотой олово медленно реагирует:
Возможно также образование хлороловянных кислот составов HSnCl3, H2SnCl4 и других, например:
В разбавленной серной кислоте олово не растворяется, а с концентрированной — реагирует очень медленно.
Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте образуется оловянная кислота b-SnO2·nH2O (иногда ее формулу записывают как H2SnO3). При этом олово ведет себя как неметалл:
При взаимодействии с разбавленной азотной кислотой олово проявляет свойства металла. В результате реакции образуется соль нитрат олова (II):
При нагревании олово, подобно свинцу, может реагировать с водными растворами щелочей. При этом выделяется водород и образуется гидроксокомплекс Sn (II), например:
Гидрид олова — станнан SnH4 — можно получить по реакции:
Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0°C.
Олову отвечают два оксида SnO2(образующийся при обезвоживании оловянных кислот) и SnO. Последний можно получить при слабом нагревании гидроксида олова (II) Sn(OH)2 в вакууме:
При сильном нагреве оксид олова (II) диспропорционирует:
При хранении на воздухе монооксид SnO постепенно окисляется:
При гидролизе растворов солей олова (IV) образуется белый осадок — так называемая a-оловянная кислота:
Свежеполученная a-оловянная кислота растворяется в кислотах и щелочах:
При хранении a-оловянная кислота стареет, теряет воду и переходит в b-оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO–Sn группировок при стоянии и замене их на более инертные мостиковые –Sn–O–Sn– связи.
При действии на раствор соли Sn (II) растворами сульфидов выпадает осадок сульфида олова (II):
Этот сульфид может быть легко окислен до SnS2 раствором полисульфида аммония:
Образующийся дисульфид SnS2растворяется в растворе сульфида аммония (NH4)2S:
Четырехвалентное олово образует обширный класс оловоорганических соединений, используемых в органическом синтезе, в качестве пестицидов и других.
История открытия: когда человек впервые познакомился с оловом точно сказать нельзя. Олово и его сплавы известны человечеству с древнейших времен. Упоминание об олове есть в ранних книгах Ветхого Завета. Сплавы олова с медью, так называемые оловянные бронзы, по-видимому, стали использоваться более чем за 4000 лет до нашей эры. А с самим металлическим оловом человек познакомился значительно позже, примерно около 800 года до нашей эры.
Из чистого олова в древности изготовляли посуду и украшения, очень широко применяли изделия из бронзы.
Нахождение в природе:олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Содержание олова в земной коре составляет, по разным данным, от 2·10 –4 до 8·10 –3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).
Получение: для добычи олова в настоящее время используют руды, в которых его содержание равно или немного выше 0,1%. На первом этапе руду обогащают (методом гравитационной флотации или магнитной сепарации). Таким образом удается повысить содержание олова в руде до 40-70%. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Затем полученный таким образом оксид SnO2восстанавливают углем или алюминием (цинком) в электропечах:
Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.
Применение: важное применение олова — лужение железа и получение белой жести, которая используется в консервной промышленности. Для этих целей расходуется около 33% всего добываемого олова. До 60% производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. Олово способно прокатываться в тонкую фольгу — станиоль, такая фольга находит применение при производстве конденсаторов, органных труб, посуды, художественных изделий. Олово применяют для нанесения защитных покрытий на железо и другие металлы, а также на металлические изделия (лужение). Дисульфид олова SnS2применяют в составе красок, имитирующих позолоту («сусальное золото»).
Искусственный радионуклид олова 119 Sn — источник v-излучения в мессбауэровской спектроскопии.
Физиологическое действие:о роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1-2)·10 –4 % олова, а его ежедневное поступление с пищей составляет 0,2-3,5 мг. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц, пыли. При воздействии паров или пыли олова может развиться станноз — поражение легких. Очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м 3 , ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г.
Источник
Оксид олова II
Оксид олова II | |
---|---|
Систематическое наименование | оксид оловаII |
Традиционные названия | монооксид олова; олово окись II, олово закись, олово одноокись |
Хим. формула | SnO |
Состояние | чёрный порошок |
Молярная масса | 134.71 г/моль |
Плотность | 6.45 г/см³ |
Температура | |
• плавления | (при 80 кПа) 1080 °C |
• кипения | 1425 °C |
• разложения | 1976 ± 1 °F [1] |
• вспышки | негорюч °C |
Мол. теплоёмк. | 47,8 Дж/(моль·К) |
Теплопроводность | 47,8 Вт/(м·K) |
Энтальпия | |
• образования | -285,98 кДж/моль |
Давление пара | 0 ± 1 мм рт.ст. [1] |
Растворимость | |
• в воде | нерастворим |
Кристаллическая структура | тетрагональная |
Рег. номер CAS | 21651-19-4 |
PubChem | 88989 |
Рег. номер EINECS | 244-499-5 |
SMILES | |
RTECS | XQ3700000 |
ChemSpider | 80298 |
Токсичность | при вдыхании вызывает кашель |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. |
Оксид олова II — неорганическое бинарное химическое соединение олова и кислорода, химическая формула SnO, черно-синие кристаллы (по другим данным коричневато-чёрные).
Содержание
Физические свойства
Темно-синие (почти чёрные) кристаллы, тетрагональная сингония, структура типа РbО (а = 0,3802 нм, с = 0,4837 нм, Z = 2, пространственная группа P42/nmm). При давлении выше 90 ГПа (900 тыс. атм) переходит в ромбическую модификацию (а = 0,382 нм, b = 0,361 нм, с = 0,430 нм, Z = 2, пространственная группа Рm2n).
Оксид олова является полупроводником, тип проводимости которого зависит от примесей и способа получения.
Получение
Оксид олова получают осторожным разложением в инертной атмосфере гидроокиси олова:
Из диоксида олова:
SnO2 + Sn → 1000oC 2 SnO
В лабораторных условиях оксид олова часто получают осторожным нагревом оксалата олова(II) в инертной атмосфере:
С помощью твёрдотельной реакции из хлорида олова II:
Химические свойства
Оксид олова II устойчив на воздухе, амфотерен с преобладанием основных свойств. Мало растворим в воде и разбавленных растворах щелочей. Растворяется в разбавленных кислотах:
и концентрированных кислотах:
Он также растворяется в сильных кислотах, давая ионные комплексы, например Sn(OH2)3 2+ или Sn(OH)(OH2) 2+ , также в менее кислотных растворах — Sn3(OH)4 2+ .
Растворяется в концентрированных растворах щелочей и их расплавах:
SnO + NaOH + H2O ⇄ 20oC Na[Sn(OH)3] SnO + 2 NaOH → 400oC Na2SnO2 + H2O
Также известны другие безводные оловосодержащие соединения, например, K2Sn2O3, K2SnO2.
Диспропорционирует при нагревании:
2 SnO → 400oC SnO2 + Sn
Окисляется кислородом воздуха:
Восстанавливается до металлического олова водородом, углеродом, кремнием, бором и парами этилового спирта:
Sn и O могут образовывать соединения нестехиометрического состава.
Применение
Оксид олова II в подавляющем большинстве случаев используется в качестве исходного продукта в производстве других, как правило, двухвалентных, соединений олова. Может применяться также в качестве восстановителя и в создании рубинового стекла. В незначительных количествах используется в качестве этерификаторного катализатора.
Оксид церия III с оксидом олова II используется в осветительных приборах как люминофор.
Источник
Соединения олова
5.1 Соединения олова -4 [4]
Гидрид олова – станнан SnН4 – бесцветный ядовитый газ, термодинамически неустойчив, при нормальных условиях постепенно разлагается с образованием оловянного зеркала: SnH4 → 2Н2 + Sn
Аналитическая реакция SnH4 + O2 → SnO2 + 2H2O + Q (васильковый цвет) [5]
5.2 Соединения олова +2
· SnO – черного цвета, мало растворим в воде. Амфотерен с преобладанием основных свойств.
· Диспропорционируют при нагревании:
· Растворим в концентрированных и разбавленных кислотах:
· Растворим в концентрированных растворах щелочей и их расплавах:
· Окисляются кислородом воздуха:
· Sn(OH)2 – белый студенистый осадок, плохо растворим в воде. Амфотерен, взаимодействует как с кислотами, так и с щелочами:
· При нагревании легко теряет воду:
Sn 2+ + H2O ↔ SnOH + + H +
· Определение Sn 2+ или Bi 3+ :
5.3 Соединения олова +4
Оксид олова (IV) белое тугоплавкое вещество. Получают сжиганием олова при высоких температурах. Амфотерен, но химически малоактивен, лучше реагирует при сплавлении. [6, с. 278 — 280]
Гидроксид олова (IV) амфотерен, но кислотные свойства у него преобладают, реагирует как с концентрированными кислотами, так и с щелочами:
SnCl2 – белый порошок, плавится, кипит без разложения. (как сильный восстановитель)
· Обесцвечивание раствора перманганата калия H + среда:
· Обесцвечивание бромной воды:
SnCl2 + H2O ↔ HCl + SnOHCl [6, с. 292]
SnCl4 – галоген – ангидрид, тяжелая бесцветная жидкость, при взаимодействии с H2O – гидролиз. [4]
Тетрагалогениды также взаимодействуют с основными галогенидами:
SnCl4 – кислота Льюиса. Как катализатор в органической химии.
SnS – тёмные кристаллы, хороший восстановитель.
E°Sn 4+ /Sn 2+ = +0, 15 В
Сульфид олова (II) не растворяется в сульфидах щелочных металлов и аммония, но полисульфиды аммония и щелочных металлов растворяют его с образованием тиостаннатов: [7, с. 361]
SnS2 – желтые кристаллы, в воде и кислотах не растворим.
5.6 Оловянные кислоты [8]
α – оловянная кислота H2SnO3•x H2O при хранении превращается в β – оловянную кислоту, а после в SnO2
· Реакция с кислотой:
· Реакция с щелочью:
Получение α – оловянной кислоты:
β – оловянная кислота H2SnO3 плохо растворяется в кислотах и щелочах. Не растворяется в воде.
· Реакция с концентрированной щелочью:
Получение β – оловянной кислоты:
· Получают растворением металлического олова в горячей концентрированной азотной кислоте с последующим разбавлением продуктов реакции большим количеством холодной воды:
· Осаждение раствора хлорида олова (IV) аммиаком:
5.7 Координационные соединения [4]
Разлагается при нагревании:
Реакция с щелочами:
Реакция с концентрированными щелочами:
Реакция с сероводородом:
Получение комплексных соединений:
· Растворение олова в царской водке:5
· Растворение хлорида олова в концентрированной соляной кислоте:
Источник