Окисление раствора формальдегида аммиачным раствором оксида серебра

Содержание
  1. § 23. Химические свойства и получение альдегидов
  2. 1. Реакции окисления
  3. 2. Реакции присоединения
  4. 3. Реакции поликонденсации
  5. Окисление раствора формальдегида аммиачным раствором оксида серебра
  6. Альдегиды и кетоны
  7. Строение карбонильных соединений
  8. Номенклатура карбонильных соединений
  9. Изомерия карбонильных соединений
  10. Изомерия альдегидов
  11. Изомерия кетонов
  12. Физические свойства альдегидов и кетонов
  13. Химические свойства альдегидов и кетонов
  14. 1.1. Гидрирование
  15. 1.2. Присоединение воды
  16. 1.3. Присоединение спиртов
  17. 1.4. Присоединение циановодородной (синильной) кислоты
  18. 2. Окисление альдегидов и кетонов
  19. 2.1. Окисление гидроксидом меди (II)
  20. 2.2. Окисление аммиачным раствором оксида серебра
  21. 2.3. Жесткое окисление
  22. 2.4. Горение карбонильных соединений
  23. 3. Замещение водорода у атома углерода, соседнего с карбонильной группой
  24. 4. Конденсация с фенолами
  25. 5. Полимеризация альдегидов
  26. Получение карбонильных соединений
  27. 1. Окисление спиртов
  28. 1.1. Окисление спиртов оксидом меди (II)
  29. 1.2. Окисление спиртов кислородом на меди
  30. 1.3. Окисление спиртов сильными окислителями
  31. 2. Дегидрирование спиртов
  32. 3. Гидратация алкинов
  33. 4. Гидролиз дигалогенпроизводных алканов
  34. 5. Пиролиз солей карбоновых кислот
  35. 6. Кумольный способ получения ацетона
  36. 7. Каталитическое окисление алкенов

§ 23. Химические свойства и получение альдегидов

От чего зависят химические свойства веществ?
В каких условиях проявляются химические свойства веществ?
Какие химические свойства можно предположить у альдегидов?

Химические свойства альдегидов обусловлены их строением, и прежде всего их наиболее реакционноспособными химическими связями. Таковыми являются химические связи атомов функциональной группы.

Проблема. Опираясь на свои знания о строении альдегидов, предскажите возможные для них типы химических реакций.

Альдегиды вступают в реакции разного типа. Но прежде всего это реакции, обусловленные наличием альдегидной группы. Химические свойства альдегиды могут проявлять и за счёт углеводородного радикала, который испытывает определённое влияние функциональной группы. Химические свойства проявляются в химических реакциях.

Рассмотрим наиболее типичные реакции альдегидов.

1. Реакции окисления

Для альдегидов характерны реакции окисления по месту связи С—Н альдегидной группы, причём альдегиды окисляются легче, чем спирты. Схема реакции окисления:

альдегиды карооновые кислоты углекислый газ.

В качестве окислителей можно использовать К2Сr2О7, КМnO4. Окислять альдегиды могут даже слабые окислители — оксиды и гидроксиды тяжёлых металлов (меди, серебра и др.).

Лабораторные опыты

Оборудование: две чистые пробирки, держатель для пробирок, спиртовка, спички, 3-5 %-й раствор формальдегида, аммиачный раствор оксида серебра (I), 5 %-й раствор сульфата меди(II), 5 %-й раствор гидроксида натрия.

Опыт 1. Окисление формальдегида аммиачным раствором оксида серебра 1 . В чистую пробирку внесите 5 капель раствора формальдегида. Прибавьте к ним 5 капель аммиачного раствора оксида серебра и слегка нагрейте на спиртовке (соблюдая правила нагревания жидкостей). Что наблюдаете? При появлении признаков реакции нагревание прекратите. Содержимое пробирки слейте в специальную ёмкость, пробирки с «зеркалом» положите в специальном месте, указанном учителем (остатки серебра пойдут на переработку). Реакция «серебряного зеркала» является качественной реакцией на альдегиды.

1 Аммиачный раствор оксида серебра представляет собой комплексное соединение серебра.

Запишем у равнение реакции:

при дальнейшем течении реакции:

В этой реакции формальдегид окисляется в угольную кислоту, а оксид серебра (I) восстанавливается до чистого металла — серебра. Реакция «серебряного зеркала» требует соблюдения особых условий: очень чистые пробирки и выдержанная концентрация необходимых растворов. Только в этом случае на стенках пробирки образуется зеркальный налёт.

Опыт 2. Реакция ацетальдегида с гидроксидом меди (II). В чистую пробирку прилейте к сульфату меди (II) около 1 мл раствора гидроксида натрия (щёлочь должна быть в избытке). Наблюдайте, что образовалось и какого цвета. Образовался нерастворимый осадок гидроксида меди (II) голубого цвета. К нему прибавьте 0,5 мл раствора ацетальдегида, пробирку взбалтывайте до образования светло-синего раствора. Смесь слабо нагрейте. Как изменяется окраска раствора? Вначале можно заметить образование жёлтого осадка гидроксида меди(I) СuОН, который затем окисляется и превращается в красный осадок. Это Сu2O.

Эта реакция используется в медицинских биохимических лабораториях для обнаружения альдегидов при анализах на сахар в крови и моче.

2. Реакции присоединения

Какие реакции называются реакциями присоединения? Приведите пример такой реакции.

А. Реакция гидрирования

Присоединение водорода происходит за счёт разрыва π-связи между атомом кислорода и атомом углерода. Эта реакция восстановления идёт в присутствии катализатора; в результате её альдегид превращается в спирт:

Б. Реакция полимеризации

Альдегиды вступают в реакцию полимеризации за счёт двойной связи в группе При длительном хранении формалина заметно образование белого осадка полимера формальдегида — параформа:

где n — степень полимеризации. У параформа она небольшая: n = 8-10.

В присутствии катализатора муравьиный альдегид может образовывать полимер со степенью полимеризации до 1000, продуктом этой реакции является полиформальдегид.

Читайте также:  Как электролизом покрыть серебром

3. Реакции поликонденсации

К какому типу реакций относится реакция поликонденсации? Приведите пример.

Некоторые альдегиды, например формальдегид, могут вступать за счёт активной связи С=O в карбонильной группе в реакцию поликонденсации с фенолом или мочевиной (карбамидом), при этом образуются высокомолекулярные соединения — фенолоформальдегидные смолы. Побочным продуктом реакции является вода. Строение фенолоформальдегидной смолы отражено § 40 на с. 259.

Химические реакции, в ходе которых из низкомолекулярных веществ образуются высокомолекулярные (полимеры) и как побочный продукт — новые низкомолекулярные вещества (вода), называются реакциями поликонденсации.

Качественные реакции на альдегиды — реакция с аммиачным раствором оксидом серебра(I) («серебряного зеркала»), а также реакция взаимодействия с фуксинсернистой кислотой, которая более проста в исполнении, чем первая.

Лабораторный опыт. Качественная реакция на альдегиды

Оборудование: пробирка, раствор фуксинсернистой кислоты (реактив Шиффа), раствор формальдегида.

Налейте в пробирку 1 мл бесцветного раствора фуксинсернистой кислоты и прибавьте 3 капли раствора формальдегида. Что наблюдаете? Постепенно жидкость приобретает розовый цвет. Это качественная реакция на альдегиды, с помощью которой они легко распознаются среди других веществ.

Источник

Окисление раствора формальдегида аммиачным раствором оксида серебра

Этот опыт должен быть продемонстрирован учащимся так, чтобы он одновременно явился и инструктажем к последующему практическому занятию. Природа аммиачного раствора оксида серебра может быть подробно разъяснена учащимся, а можно лишь сообщить им, что образующийся при реакции гидроксид серебра — вещество непрочное и легко распадается на оксид серебра и воду:

2 AgOH à Ag 2 O + H 2 O

Оксид серебра обладает свойством растворяться в аммиаке

Окислительное действие оксида серебра объясняется тем, что это вещество является оксидом благородного металла, поэтому оксид неустойчив и при наличии восстановителя, т.е. вещества, легко окисляющегося, он легко отдает кислород, вследствие чего происходит выделение (восстановление) металлического серебра. Уравнение реакции можно дать в обычном виде:

HC-OH + Ag2O -> HCOOH + 2Ag

а можно представить полное уравнение реакции:

Серебряное зеркало образуется в том случае, если восстанавливающееся серебро осаждается на гладких стенках сосуда из не слишком концентрированных растворов. Малейшие загрязнения мешают восстанавливающемуся серебру «уцепиться» за стекло и заставляют его выделяться в виде рыхлого осадка. Значительно меньшее влияние на успех опыта оказывает характер нагревания. Если сосуд недостаточно чист, то даже самое осторожное нагревание не дает зеркала, и наоборот, если сосуд подготовлен тщательно, то даже нагревание смеси на открытом огне может дать желаемый результат.

Первый опыт получения серебряного зеркала следует провести в колбочке, а не в пробирке. Колбу емкостью 50-100 мл до урока очищают от механических загрязнений, промывают ершиком с мыльной водой или нагревают в колбе раствор щелочи, затем споласкивают водой, промывают хромовой смесью и наконец начисто промывают дистиллированной водой.

В колбу наливают на четверть объема 2-процентный раствор нитрата серебра, затем добавляют постепенно раствор аммиака (25-процентный аммиак следует разбавить в 8-10 раз) до тех пор, пока образующийся вначале осадок не растворится в его избытке. К образующемуся раствору добавляют осторожно по стенке 0,5-1 мл формалина и помещают колбу в стакан с горячей (лучше кипящей) водой.

Вскоре в колбе образуется красивое серебряное зеркало. Колбу можно нагревать без водяной бани, непосредственно на маленьком пламени, обнося пламя вокруг колбы и не встряхивая ее. При демонстрации опыта вместо серебряного зеркала иногда образуется черный осадок. Учитель в таком случае обычно совершенно бракует опыт. Между тем при таком результате следует разъяснить учащимся, что здесь также произошло восстановление серебра только в виде рыхлого черного осадка.

Источник

Альдегиды и кетоны

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами .

Структурная формула кетонов:

Строение карбонильных соединений

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует три σ-связи и одну π-связь.

Одна из σ–связей – связь С–О, все три σ–связи расположены в одной плоскости под углом 120 о друг к другу.

π-Связь образована р-электронами атомов углерода и кислорода.

Из-за большей электроотрицательности атома кислорода по сравнению с атомом углерода связь С=О сильно поляризована, электронная плотность смещена к более электроотрицательному атому кислорода.

Читайте также:  Как зарабатывать серебро аватарии
На атоме кислорода возникает частичный отрицательный (δ – ), а на атоме углерода – частичный положительный (δ + ) заряды.

Номенклатура карбонильных соединений

  • По систематической номенклатуре к названию углеводорода добавляют суффикс «-АЛЬ».

Нумерация ведется от атома углерода карбонильной группы.

Например, 2-метилпропаналь

  • К названию кетонов добавляют в название суффикс «-ОН». После этого добавляют номер атомов углерода карбонильной группы.
Например, пентанон-2

  • Тривиальные названия альдегидов и кетонов приведены в таблице.

Изомерия карбонильных соединений

Изомерия альдегидов

Для альдегидов характерна структурная изомерия – изомерия углеродного скелета и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомерия углеродного скелета характерна для альдегидов, которые содержат не менее четырех атомов углерода.

Например. Ф ормуле С4Н8О соответствуют два альдегида-изомера углеродного скелета
Бутаналь 2-Метилпропаналь

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Альдегиды являются межклассовыми изомерами с кетонами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для альдегидов, которые содержат не менее трех атомов углерода.

Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
Пропаналь Ацетон (пропанон)

Изомерия кетонов

Для кетонов характерна изомерия углеродного скелета, изомерия положения карбонильной группы и межклассовая изомерия.

Изомерия углеродного скелета характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют кетоны-изомеры углеродного скелета
Пентанон-2 3-Метилбутанон-2

Изомерия положения карбонильной группы характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют два кетона-изомера углеродного скелета
Пентанон-2 Пентанон-3

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Кетоны являются межклассовыми изомерами с альдегидами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для кетонов, которые содержат не менее трех атомов углерода.

Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
Пропаналь Ацетон (пропанон)

Физические свойства альдегидов и кетонов

Все альдегиды и кетоны, кроме формальдегида – жидкости. Лёгкие альдегиды хорошо растворимы в воде из-за водородных связей, которые они образуют с водой.

Химические свойства альдегидов и кетонов

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацетали это соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

Вторичные спирты окисляются в кетоны:

в торичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + Cu(OH)2 = Cu + HCOOH + H2O

Чаще в этой реакции образуется оксид меди (I):

HCHO + 2Cu(OH)2 = Cu2O + HCOOH + 2H2O

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды.

Упрощенный вариант реакции:

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метаналь СН2О CO2 K2CO3
Альдегид R-СНО R-COOH R-COOK
Кетон R-COOH/ СО2 R-COOK/ K2СО3

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метаналя:

3. Замещение водорода у атома углерода, соседнего с карбонильной группой

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

4. Конденсация с фенолами

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.).

5. Полимеризация альдегидов

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Получение карбонильных соединений

1. Окисление спиртов

При окислении первичных спиртов образуются альдегиды, при окислении вторичных спиртов – кетоны.

1.1. Окисление спиртов оксидом меди (II)

Например, при окислении этанола оксидом меди образуется уксусный альдегид

Например, при окислении изопропанола оксидом меди образуется ацетон

1.2. Окисление спиртов кислородом на меди

При пропускании паров спирта с кислородом над медной сеткой образуются альдегиды и кетоны.

Например, при окислении пропанола-1 кислородом в присутствии меди образуется пропаналь

В промышленности формальдегид получают окислением метанола на серебряном катализаторе при температуре 650 о С и атмосферном давлении:

1.3. Окисление спиртов сильными окислителями

Вторичные спирты при этом окисляются до кетонов. Первичные спирты можно окислить до альдегидов, если предотвратить дальнейшее окисление альдегида (например, отгонять образующийся альдегид в ходе реакции).

2. Дегидрирование спиртов

При пропускании спирта над медной сеткой при нагревании образуются карбонильные соединения.

Например, при дегидрировании этанола образуется этаналь

3. Гидратация алкинов

Присоединение воды к алкинам в присутствии солей ртути (II) приводит к образованию карбонильных соединений.

Например, при гидратации ацетилена образуется уксусный альдегид

Например: при гидратации пропина образуется ацетон

4. Гидролиз дигалогенпроизводных алканов

Под действием водного раствора щелочи образуется неустойчивый диол с двумя ОН-группами при одном атоме С, он теряет воду, превращаясь в альдегид или кетон.

Например: при гидролизе 1,1-дихлорэтана образуется этаналь

5. Пиролиз солей карбоновых кислот

При нагревании солей карбоновых кислот и двухвалентных металлов образуются неорганические соли (карбонаты) и кетоны.

Например: п ри пиролизе ацетата кальция образуется ацетон и карбонат кальция:

6. Кумольный способ получения ацетона

Ацетон в промышленности получают каталитическим окислением кумола.

Первый этап процесса – получение кумола алкилированием бензола пропеном в присутствии фосфорной кислоты:

Второй этап – окисление кумола кислородом. Процесс протекает через образование гидропероксида изопропилбензола:

Суммарное уравнение реакции:

7. Каталитическое окисление алкенов

При окислении этилена кислородом в присутствии катализаторов образуется уксусный альдегид.

Источник

Читайте также:  Дизайн беж с серебром