Олово это сплав каких металлов

Металл олово

Олово (Sn) является коррозионностойким нетоксичным легкоплавким металлом, что определяет его применение в пищевой и электронной промышленности. Помимо этого Sn является составным компонентов многих сплавов. На странице представлено описание данного материала: физические и химические свойства, области применения, марки, виды продукции.

Основные сведения

Олово (Sn, Stannum) — химический элемент с атомным номером 50 в периодической системе. Относится к группе легких металлов; ковкий и пластичный материал. Имеет серебристо-белый цвет с блестящей поверхностью. Плотность составляет 7,31 г/см 3 , температура плавления tпл. = 231,9 °С, температура кипения tкип. = 2620 °С.

Металл может существовать в трех модификациях в зависимости от температуры:

  • α-Sn (серое олово) — температура ниже 13,2 °С; кубическая кристаллическая решетка типа алмаза;
  • β-Sn (белое олово) — температура выше 13,2 °С; тетрагональная кристаллическая решетка;
  • γ-Sn — температура 161-232 °С.

Стоит отметить, что при температуре окружающей среды ниже 13,2 °С олово изменяет свое фазовое состояние и переходит в α-модификацию. При этом оно трескается и превращается в порошок. Наиболее высокая скорость перехода наблюдается при температуре -33 °С. Данное явление получило название “оловянная чума”.

В земной коре содержание Sn по разным данным составляет от 2·10 -4 до 8·10 -3 % по массе. Данный металл занимает 47-е место по распространенности в земной коре. Основным минералом, содержащим олово, является касситерит (оловянный камень), в состав которого входит до 78,8% Sn. Лидерами по запасам рассматриваемого химического элемента являются Китай, Индонезия, Малайзия и Таиланд.

История открытия

Свойства олова

Физические и механические свойства

Свойство Значение
Атомный номер 50
Атомная масса, а.е.м 118,7
Радиус атома, пм 162
Плотность, г/см³ 7,31
Теплопроводность, Вт/(м·K) 66,8
Температура плавления, °С 231,9
Температура кипения, °С 2620
Теплота плавления, кДж/моль 7,07
Теплота испарения, кДж/моль 296
Молярный объем, см³/моль 16,3
Группа металлов Легкий металл

Химические свойства

Свойство Значение
Ковалентный радиус, пм 141
Радиус иона, пм (+4e) 71 (+2) 93
Электроотрицательность (по Полингу) 1,96
Электродный потенциал -0,136
Степени окисления +4, +2
Энергия ионизации, кДж/моль (эВ) 708,2 (7,34)

Марки олова

Достоинства / недостатки

    Достоинства:
  • имеет хорошую коррозионную стойкость в среде органических кислот и солей;
  • не подвержен негативному влиянию серы, содержащейся в пластике;
  • нетоксичен, что позволяет использование в пищевой промышленности.
    Недостатки:
  • имеет низкую температуру плавления;
  • склонность к “оловянной чуме”.

Области применения олова

Sn имеет несколько основных направлений применения. Благодаря своей нетоксичности и стойкости к коррозии в среде органических солей и кислот данный металл получил распространение в пищевой промышленности. Его наносят в виде покрытий на различные изделия, имеющие контакт с продуктами питания. Оловом также покрывают медные жилы проводов. Оно защищает Cu от негативного воздействия S, содержащейся в резиновой изоляции.

В производстве электронных приборов, где очень часто для соединения элементов применяется пайка, олово используется в качестве припоя.

Sn является составляющей большого количества сплавов с медью, цинком, медью и цинком, медью и сурьмой. Среди наиболее известных можно выделить баббиты, бронзы.

Продукция из олова

Современная промышленность выпускает разнообразную продукцию из олова. Наиболее распространены чушки, проволока, прутки и аноды.

Достаточное широкое применение в промышленности получили оловянные аноды, которые используются при лужении поверхностей различных изделий. Оловянная проволока и прутки часто используются в качестве припоев в электронике при пайке. Оловянные чушки выступают исходным материалом для производства остальных полуфабрикатов, а также используются при выплавке сплавов, содержащих олово.

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Источник

Олово

Олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов.Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120 Sn наиболее распространен (около 33%).

СТРУКТУРА

Олово имеет две аллотропные модификации: a-Sn (серое олово) с гранецентрированной кубической кристаллической решеткой и b-Sn (обычное белое олово) с объемноцентрированной тетрагональной кристаллической решеткой. Фазовый переход b -> a ускоряется при низких температурах (-30° С) и в присутствии зародышей кристаллов серого олова; известны случаи, когда оловянные изделия на морозе рассыпались в серый порошок («оловянная чума»), но это превращение даже при очень низких температурах резко тормозится наличием мельчайших примесей и поэтому редко встречается, представляя скорее научный, чем практический интерес.

СВОЙСТВА

Плотность b-Sn 7,29 г/см 3 , плотность a-Sn 5.85 г/см 3 ,. Температура плавления 231,9°C, температура кипения 2270°C.
Температурный коэффициент линейного расширения 23·10 -6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10 -6 ом·м, то есть 11,5·10 -6 ом·см. Серое олово является диамагнетиком, а белое — парамагнетиком.

Предел прочности при растяжении 16,6 Мн/м 2 (1,7 кгс/мм 2 ); относительное удлинение 80-90%; твердость по Бринеллю 38,3-41,2 Мн/м 2 (3,9-4,2 кгс/мм 2 ). При изгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.

Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется.

ЗАПАСЫ И ДОБЫЧА

Олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10 −4 до 8·10 −3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn). Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии — Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.

В России запасы оловянных руд расположены в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.

В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем

10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удается повысить содержание олова в руде до 40-70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочередно со слоями руды, или алюминием (цинком) в электропечах: SnO2 + C = Sn + CO2. Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.

ПРОИСХОЖДЕНИЕ

Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.

В общем можно выделить следующие формы нахождения олова в природе:

  1. Рассеянная форма: конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
  2. Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe +2 : биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например, по схеме Sn +4 + Fe +2 → 2Fe +3 . В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.

На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2 +1 Fe +2 SnS4 или тиллита PbSnS2 и других минералов.

ПРИМЕНЕНИЕ

Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).

Искусственные радиоактивные ядерные изомеры олова 117m Sn и 119m Sn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.

Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.

Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.

Источник

Обзор сплавов олова

В статье приведен обзор сплавов на основе олова. Рассмотрены припои, бронзы, баббиты и пьютеры. Описываются их марки, свойства, применение

Олово — это металл, для которого характерны устойчивость к образованию коррозии и экологичность (нетоксичность). Благодаря этим качествам его широко используют в пищевой и электронной промышленности. Довольно часто олово выступает составляющим элементом металлосплавов. Оловянные сплавы по сфере применения классифицируются на подшипниковые, легкоплавкие и припои. На основе олова производятся баббиты, бронза, припои и пьютеры. Каждый из них имеет свой специфический химический состав, свойства и сферу применения.

Баббиты

Баббиты производятся на базе олова (или свинца). Их применяют как напыленный или залитый слой. На сегодняшний день существует несколько вариаций химического состава баббитовых сплавов. Наиболее применяемыми считаются следующие:

  • 90% олова и 10% меди — баббиты на основе олова с добавлением меди;
  • 89% олова, 7% сурьмы и 4 % меди — оловянный сплав с добавлением сурьмы и меди;
  • 80% свинца, 15% сурьмы и 5% олова. — баббиты на основе свинца с добавлением сурьмы и олова.

Легирующими присадками могут выступать в этих сплавах различные металлы.

Баббиты плавятся при температуре от 300 градусов Цельсия. Как уже было отмечено выше, в основе этих материалов лежит олово. Маркируются они как Б88, Б83, Б83С. Данные сплавы применяются в целях повышения вязкости и, напротив, снижения коэффициента трения. Если сравнить эти показатели у оловянного и свинцового баббита, то первый отличается большой стойкостью к появлению коррозии, теплопроводностью и прочностью к различного рода воздействиям.

Сплавы на основе свинца имеют высокие температуры применения (даже выше, чем у оловянных баббитов). Они используются при изготовлении подшипников для двигателей дизельного типа. Также свинцовые баббиты применяют в производстве прокатных станов.

Рисунок 1. Подшипник скольжения

Для всех баббитов характерен такой значительный минус, как малое сопротивление усталости. Незначительная степень прочности этих лигатур позволяет применять их лишь в производстве подшипников, которые, напротив, отличаются износостойким и надежным корпусом, выполненным из стали или бронзы. Долговечность подшипников напрямую зависит от толщины слоя баббитового сплава, залитого на вкладыш из стали. И, соответственно, чем тоньше баббитовый слой, тем меньше срок эксплуатации подшипника.

Рисунок 2. Оловянные баббиты

Бронзы

Другим распространенным видом оловянных сплавов является бронза – оловянно-медный сплав. В принципе, под бронзой подразумевают также и медные сплавы в сочетании с другими элементами. В составе любого типа бронзы содержатся незначительные пропорции различных добавок (цинка, свинца, фосфора и других элементов).

Известную всем бронзу человечество начало изготавливать еще в эпоху Бронзового века. Ее применяли достаточно долгий период времени. Осталась она востребованной и при Железном веке. Она плавится при 930—1140 °C. А плотность бронзы равна 7800-8700 кг/м 3 .

Если изначально в мире была востребована мышьяковая бронза, то с развитием гужевого транспорта и внешней экономики в ряде стран мира начали применять оловянную бронзу. Особенно актуально было использование данного сплава в стремительно развивающейся сфере крупной промышленности. Правда, в последние десятилетия ее начали вытеснять неоловянные сорта бронзы (алюминиевые, медные и др.). Считается, что они превосходят оловянный сплав по своим свойствам.

Что из себя представляет оловянная бронза? Это медно-оловянный сплав, в котором меди содержится в большем количестве, нежели олова. Положительными свойствами данного сплава можно назвать такие его качества, как:

  • Твердость;
  • Прочность;
  • Легкоплавкость.

Оловянная бронза обладает данными свойствами в большей степени, нежели чистая медь. Данный сплав устойчив к затачиванию и другим видам обработки. Это говорит о том, что он относится к литейным металлам. Усадка у бронзы сравнительно низкая. Она составляет всего 1% (к примеру, у латуни и чугуна она равна 1,5%, у стали – превышает 2%). Это позволяет применять оловянные бронзы для изготовления отливок.

Их плюсами являются такие качества, как устойчивость к образованию коррозии и отличные антифрикционные свойства. Это объясняет использование данных сплавов в химической промышленности. В частности, их применяют для изготовления литой арматуры. Не менее популярны оловянные бронзы и в других промышленных отраслях.

Легирующими компонентами в данных сплавах выступают такие элементы, как:

  • Цинк;
  • Никель;
  • Фосфор;
  • Свинец;
  • Мышьяк.

И другие металлы. Содержание цинка в бронзах не превышает 10%. Такое незначительное содержание данного компонента никак не влияет на качества этих сплавов. При этом его использование помогает снизить расходы на изготовление оловянных бронз и повышает их устойчивость к коррозии. Добавление в качестве легирующих компонентов свинца и фосфора положительно сказывается на антифрикционные свойства данных сплавов. К тому же так оловянные бронзы легче поддаются резке и давлению.

Их маркировка представлена следующим образом:

  • Бр ОФ 6,5-0,15;
  • Бр.ОЦ 4-3;
  • Бр.ОЦ10-2;
  • Бр.ОФ 10-1;
  • Бр.ОНС 11-4-3.

Сегодня эти сплавы широко применяются в транспортной промышленности.

Устойчивость оловянных бронз к ржавчине и механическим повреждениям позволяет использовать их в производстве деталей машин. Производимые элементы относятся к расходным материалам, поскольку необходима их регулярная замена.

Бронза отличается долговечностью. Она устойчива к атмосферным осадкам и механическим воздействиям. Изделия, выполняющие декоративную функцию в театрах и дворцах, также производятся из бронз.

Рисунок 3. Изделия из бронзы для нефтегазового оборудования

Пьютер

Пьютером называется сплав олова с такими элементами периодической системы, как медь, сурьма и висмут. Иногда олово смешивают со свинцом. Сплав маркируется символами JJ. Пьютер плавится уже при 170-230 градусах. Следует отметить внешнюю эстетичность данных сплавов. Их легко полировать. Пьютеры необходимы при изготовлении декоративной посуды. Также сплавы используются в производстве различных украшений. Одним из существенных минусов изделий, изготавливаемых с применением пьютеров, является их низкая устойчивость перед так называемой оловянной чумой. Еще один не менее значимый недостаток данных сплавов – их токсичность. В некоторых странах (к примеру, в Англии) их запретили к использованию. Однако пьютер все же содержится в изделиях, относящихся к антиквариату.

Припои

Припои – это тоже лигатуры/сплавы.Они бывают легкоплавкими и твердыми. К первой группе относятся оловянно-свинцовые сплавы. В них также включают и другие элементы. Однако, как правило, их содержание в припоях бывает незначительно. Легирующие элементы обычно добавляют в данные сплавы для улучшения показателей тех или иных свойств (антикоррозийной защите, прочности и т.д.).

Легкоплавкие припои используются для монтажа и сборки радиоаппаратуры и различной электроники. Хотя они не такие прочные, как твердые сплавы, однако для данных целей они наиболее приемлемы. Их температура плавления составляет 300-450 градусов Цельсия (иногда меньше).

На сегодняшний день более популярной и востребованной считается припой марки ПОС. В маркировочных таблицах можно заметить несколько ПОС с различными номерами, следующими за данной аббревиатурой. Эти цифры являются показателями объема олова в них. К примеру, в припоях марки ПОС-40 количество олова составляет 40% от общего объема. Кстати, те сплавы, в которых содержится много олова, отличаются ярким металлическим блеском. Особенно значительно содержание данного элемента в марках ПОС-61 и ПОС–90. Те же сплавы, в составе которых преобладает свинец (а не олово), имеют матовую поверхность темно-серого цвета. Еще одна их отличительная особенность – хорошая пластичность. Те припои, в которых больше олова, жестки и прочны. Их невозможно легко и быстро погнуть.

Оловянно-свинцовые припои находят применение в самых разных отраслях промышленности. Так,

  • ПОС-90 используют при восстановлении пищевой посуды и медицинских приборов и устройств. Низкое содержание известного своей токсичностью свинца (10%) позволяет применять данные сплавы для вышеназванных целей;
  • ПОС-40 используется в процессе запаивания электроприборов и различных деталей из оцинкованного железа. Он подходит для ремонта радиаторов отопления и труб из латуни и меди;
  • ПОС-30. Часто используется в производстве кабелей и обработки листового цинка. Его полное плавление происходит при температуре в 220-265 градусов Цельсия;
  • ПОС-61. Аналогичен с ПОС-60. Практически один и тот же сплав. Применяется для запаивания печатных плат радиоприборов. Довольно часто используется при сборке электронного оборудования. Он начинает плавиться при 183 градусах Цельсия и выше. При 190 градусах припой расплавляется полностью.

Сплавы ПОС-40 и ПОС-90 также, как и ПОС-30, полностью расплавляются при 220-265 градусах Цельсия. Однако такую температуру «выдерживают» далеко не все электро- и радиоприборы. Поэтому оптимальным вариантом ля применения являются припои ПОС-61.

Поскольку припои выпускаются в тюбиках, то их состав можно прочитать на самих упаковках. Там бывает четко обозначено процентное соотношение олова и других элементов в данном сплаве.

Существует еще один сорт оловянных припоев. Речь идет о марке ПОССу. Этот сплав содержит в себе олово, свинец и сурьму. Его используют в производстве автотранспорта и холодильников, а также в целях запаивания обмоток машин электрического типа, электроники и кабелей. Содержание сурьмы в таких припоях варьируется от 0,5 % до 2%. ПОССу плавится при 189 градусах Цельсия.

И, пожалуй, наиболее «оловянным» можно назвать припой марки ПОССу 95-5. Олова и свинца в данном сплаве соответственно 95 к 5 процентам. Он плавится при 234-240 градусах.

Существуют также низкотемпературные припои. Это те сплавы, которые вследствие своей низкой температуры плавления можно без опасений использовать при запайке чувствительных к высоким температурам деталей приборов. Один из таких припоев – ПОСК-50-18. Он расплавляется при 142-145 градусах Цельсия. В данном сплаве олово составляет половину от всего содержимого припоя. В ПОСК–50-18 также бывает добавлен кадмий, который увеличивает его антикоррозийную устойчивость. Однако этот же легирующий компонент повышает токсичность данного сплава.

Таким образом, олово способно сочетаться в сплавах с другими металлами. Полученные металлопродукты отличаются высокой устойчивостью к появлению коррозии и внешней эстетичностью (яркий металлический блеск). В те или иные оловянные сплавы нередко добавляют легирующие компоненты для улучшения их свойств. Благодаря большому разнообразию соединений такого рода олово нашло применение в ряде отраслей промышленности.

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Источник

Читайте также:  Распределить валентные электроны олова по квантовым ячейкам