Олово оксид как еще называют

ОЛОВА ОКСИДЫ

ОЛОВА ОКСИДЫ. Монооксид SnO-черные кристаллы, кристаллич. решетка тетрагональная типа РbО (а = 0,3802 нм, с = 0,4838 нм, z = 2, пространств, группа P4 2 /nmm); плотн. 6,446 г/см 3 ; 47,8 Дж/(моль • К); — 280,7 кДж/моль; 57,2 Дж/(моль·К); при давлении выше 90 ГПа переходит в ромбич. модификацию (а = 0,382 нм, b = 0,361 нм, с — 0,430 нм, z = 2, пространств. группа Рт2п); не раств. в воде. Амфотерен, преобладают основные св-ва; раств. в к-тах с образованием солей Sn 2+ ; в кислых р-рах — восстановитель, окисляется до Sn 4+ ; на воздухе выше 400 °С окисляется до SnO 2 ; без доступа О 2 выше 180°С диспропорционирует на SnO 2 и Sn. Полупроводник р- или n-типа в зависимости от условий получения: дырочную проводимость [r (0,33-1)·10 4 Ом·см] имеют кристаллы, полученные осаждением из р-ров SnCl 2 содой или NH 3 и высушенные при т-рах до 100 °С; SnO, полученный любым способом при т-рах выше 180°С, имеет электронную проводимость.

Получают SnO разложением SnO 2 , гидроксида, оксалата или нек-рых др. солей Sn 2 + в вакууме, атмосфере N 2 или др. инертного газа, а также окислением Sn. Используют SnO для получения солей Sn 2 + , как катализатор р-ций замещения и гидролиза, черный пигмент в произ-ве стекла, восстановитель в металлургии.

Диоксид SnО 2 -бесцв. кристаллы, кристаллич. решетка тетрагональная типа рутила (а = 0,4738 нм, с — 0,3188 нм, z = 4, пространств, группа P4 2 /nmm); т. пл. 1630 °С; плотн. 7,0096 г/см 3 ; 53,2 Дж/ (моль • К); -577,63 кДж/моль; 49,01 Дж/(моль·К). Испаряется преим. в виде SnO, в парах присутствуют также О 2 и оксиды Sn n О n , где п = 2, 3 или 4; ур-ния температурной зависимости давления пара: lg p(SnO,Пa) = 14,55-20450/Т, lg р(О 2 , Па) = 13,22-20000/Т. Не раств. в воде; устойчив в водных р-рах к-т, солей, щелочей, разл. восстановителей. При сплавлении со щелочами и карбонатами образует с таннаты М 2 [Sn(OH) 6 ]; при нагр. в присут. восстановителей превращ. в металл. SnO 2 -полупроводник n-типа; ширина запрещенной зоны 3,54 эВ (300 К); подвижность электронов 7см 2 /(В·с); концентрация носителей заряда 3,5·10 14 см -3 ; 3,4·10 3 Ом·см. При легировании элементами V гр. (напр., Sb) электрич. проводимость SnO 2 увеличивается в 10 3 -10 5 раз. SnO 2 прозрачен для видимого света и отражает ИК излучение с длиной волны выше 2 мкм.

В природе SnO 2 -минерал касситерит (оловянный камень).

Поликристаллич. SnO 2 получают прокаливанием солей Sn (IV) на воздухе, осаждением оловянных к-т из р-ров солей Sn и их послед. прокаливанием на воздухе при т-рах до 1230°С. Монокристаллы SnO 2 выращивают из паровой фазы с использованием процессов окисления, пиролиза или гидролиза соед. Sn, из р-ров гидротермальным синтезом. Пленки SnO 2 получают окислением пленок Sn, методом хим. транспортных р-ций из хлоридов Sn или оловоорг. соед. с их послед. пиролизом или гидролизом на подложках, конденсацией SnO 2 в вакууме из паровой фазы, содержащей Sn, O 2 и SnO.

Используют SnO 2 в виде порошков и керамики в произ-ве прозрачных, электропроводящих и теплоотражающих материалов, как белый пигмент в произ-ве стекла и жаропрочных эмалей и глазурей, катализатор р-ций замещения и гидролиза. Тонкие пленки SnO 2 , нанесенные на стеклянные или полиэтиленовые подложки, используют в качестве антиобледенителей в самолетах, автомобилях и др. транспортных ср-вах, теплоизолирующих окон в помещениях, обогреваемых солнечным светом, прозрачных проводящих покрытий в электронных приборах. Касситерит — сырье в произ-ве Sn.

Читайте также:  Олова с хлороводородной кислотой

Гидраты олова оксидов -SnO·H 2 O, или гидроксид Sn(OH) 2 , SnO 2 ·xH 2 O, или оловянные к-ты (см. Олово), образуются при щелочном гидролизе соотв. SnCl 2 и SnCl 4 . SnO·H 2 O-бесцв. аморфное в-во, с р-рами щелочей образует станнаты (II) M[Sn(OH) 3 ], быстро разлагающиеся на станнаты (IV) M 2 [Sn(OH) 6 ] и Sn, что используется при нанесении покрытий из олова.

Лит.: Вайнштейн В. М., Фистуль В. И., в кн.: Итоги науки и техники. Сер. Электроника и ее применение, т. 4, М., 1973, с. 108-52; Jarzebski Z. М., М art on J. P., «J. Electrochem. Soc.», 1976, v. 123, №7, p. 199C-205C; № 9, p. 299C-310C; № 10, p. 333C-346C; Chopra K. L., Major S., Panel у a D. K., «Thin Solid Films», 1983, v. 102, № 1, p. 1-46.

Источник

Оксид олова II

Оксид олова II
Систематическое
наименование
оксид оловаII
Традиционные названия монооксид олова; олово окись II, олово закись, олово одноокись
Хим. формула SnO
Состояние чёрный порошок
Молярная масса 134.71 г/моль
Плотность 6.45 г/см³
Температура
• плавления (при 80 кПа) 1080 °C
• кипения 1425 °C
• разложения 1976 ± 1 °F [1]
• вспышки негорюч °C
Мол. теплоёмк. 47,8 Дж/(моль·К)
Теплопроводность 47,8 Вт/(м·K)
Энтальпия
• образования -285,98 кДж/моль
Давление пара 0 ± 1 мм рт.ст. [1]
Растворимость
• в воде нерастворим
Кристаллическая структура тетрагональная
Рег. номер CAS 21651-19-4
PubChem 88989
Рег. номер EINECS 244-499-5
SMILES
RTECS XQ3700000
ChemSpider 80298
Токсичность при вдыхании вызывает кашель
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Оксид олова II — неорганическое бинарное химическое соединение олова и кислорода, химическая формула SnO, черно-синие кристаллы (по другим данным коричневато-чёрные).

Содержание

Физические свойства

Темно-синие (почти чёрные) кристаллы, тетрагональная сингония, структура типа РbО (а = 0,3802 нм, с = 0,4837 нм, Z = 2, пространственная группа P42/nmm). При давлении выше 90 ГПа (900 тыс. атм) переходит в ромбическую модификацию (а = 0,382 нм, b = 0,361 нм, с = 0,430 нм, Z = 2, пространственная группа Рm2n).

Оксид олова является полупроводником, тип проводимости которого зависит от примесей и способа получения.

Получение

Оксид олова получают осторожным разложением в инертной атмосфере гидроокиси олова:

Из диоксида олова:

SnO2 + Sn → 1000oC 2 SnO

В лабораторных условиях оксид олова часто получают осторожным нагревом оксалата олова(II) в инертной атмосфере:

С помощью твёрдотельной реакции из хлорида олова II:

Химические свойства

Оксид олова II устойчив на воздухе, амфотерен с преобладанием основных свойств. Мало растворим в воде и разбавленных растворах щелочей. Растворяется в разбавленных кислотах:

и концентрированных кислотах:

Он также растворяется в сильных кислотах, давая ионные комплексы, например Sn(OH2)3 2+ или Sn(OH)(OH2) 2+ , также в менее кислотных растворах — Sn3(OH)4 2+ .

Растворяется в концентрированных растворах щелочей и их расплавах:

SnO + NaOH + H2O ⇄ 20oC Na[Sn(OH)3] SnO + 2 NaOH → 400oC Na2SnO2 + H2O

Также известны другие безводные оловосодержащие соединения, например, K2Sn2O3, K2SnO2.

Диспропорционирует при нагревании:

2 SnO → 400oC SnO2 + Sn

Окисляется кислородом воздуха:

Восстанавливается до металлического олова водородом, углеродом, кремнием, бором и парами этилового спирта:

Sn и O могут образовывать соединения нестехиометрического состава.

Применение

Оксид олова II в подавляющем большинстве случаев используется в качестве исходного продукта в производстве других, как правило, двухвалентных, соединений олова. Может применяться также в качестве восстановителя и в создании рубинового стекла. В незначительных количествах используется в качестве этерификаторного катализатора.

Оксид церия III с оксидом олова II используется в осветительных приборах как люминофор.

Источник

Оксид олова IV

Оксид олова IV
Систематическое
наименование
Оксид олова IV
Традиционные названия Окись олова, двуокись олова, диоксид олова, касситерит
Хим. формула SnO2
Рац. формула SnO2
Состояние белые кристаллы
Молярная масса 150,71 г/моль
Плотность 7,0096 г/см 3
Температура
• плавления 1630 °C
• кипения 2500 (разл.) °C
• разложения
Мол. теплоёмк. 53,2 Дж/(моль·К)
Энтальпия
• образования −577,63 кДж/моль
Давление пара 0 ± 1 мм рт.ст.
Растворимость
• в воде нерастворим
Показатель преломления 2,006 (D-линия натрия 589,29 нм )
Кристаллическая структура гексагональная типа рутила
Рег. номер CAS 18282-10-5
PubChem 29011
Рег. номер EINECS 242-159-0
SMILES
RTECS XQ4000000
ChEBI 52991
ChemSpider 26988
ЛД50 крысы, перорально 20 г/кг
Токсичность низкая
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Оксид олова IV (диоксид олова, двуокись олова) — бинарное неорганическое соединение, оксид металла олова с формулой SnO2. Белые кристаллы, нерастворимые в воде.

Содержание

Нахождение в природе

В природе встречается минерал касситерит — SnO2, основная руда олова, который в чистом виде бесцветен, однако примеси придают ему самые различные цвета.

Получение

Сжигание олова в воздухе или в кислороде при высокой температуре:

Окисление кислородом воздуха монооксида олова:

Диспропорционирование при нагревании монооксида олова:

2 SnO → 400oC SnO2 + Sn

Окисление олова горячей концентрированной азотной кислотой:

Разложение сульфата олова при нагревании:

или взаимодействием сульфата олова с разбавленной щёлочью:

Прокаливание на воздухе моносульфида олова:

Физические свойства

Оксид олова IV из раствора при осаждении выделяется в виде гидрата переменного состава SnO2· n H2O, где 1 ≤ n ≤ 2 , так называемая α -модификация). При стоянии осадка переходит химически пассивную β -модификацию ( n ≤ 1 ). Соединения со стехиометрическим составом гидратов не выделены.

В воде практически нерастворим, р ПР = 57,32. Нерастворим также в этаноле и других не взаимодействующих с веществом растворителях.

При высушивании гидрата диоксида олова образуется аморфный белый порошок с плотностью 7,036 г/см³ , переходящий при нагревании в кристаллическую модификацию с плотностью 6,95 г/см³ .

Оксид олова IV образует прозрачные бесцветные кристаллы тетрагональной сингонии, пространственная группа P 42/mnm, параметры ячейки a = 0,4718 нм , c = 0,3161 нм , Z = 2 , — кристаллическая структура типа рутила (диоксида титана).

Молярная энтропия S o
298 = 49,01 Дж/(моль·К) . Теплоёмкость C o
p = 53,2 Дж/(моль·К) . Стандартная энтальпия образования ΔH o
обр = −577,63 кДж/моль .

Является широкозонным полупроводником n -типа, при 300 К ширина запрещённой зоны 3,6 эВ , подвижность электронов 7 см 2 /(В·с) , концентрация носителей 3,5·10 14 см −3 , удельное электрическое сопротивление 3,4·10 3 Ом·см . Легирование элементами V группы, например, сурьмой увеличивает электрическую проводимость на 3—5 порядков.

Диамагнитен. Молярная магнитная восприимчивость χmol = −4,1·10 −5 моль −1 .

Диоксид олова прозрачен в видимом свете, отражает инфракрасное излучение с длиной волны более 2000 нм.

Температура плавления 1630 °C. При высокой температуре испаряется с разложением на монооксид олова (и его ди-, три- и тетрамеры) и кислород.

Химические свойства

Гидратированная форма переходит в кристаллическую при нагревании:

Растворяется в концентрированных кислотах:

При нагревании растворяется в разбавленных кислотах:

Растворяется в растворах концентрированных щелочей:

При сплавлении с щелочами и карбонатами образует метастаннаты:

а с оксидами щелочных металлов образует ортостаннаты:

SnO2 + 2 K2O → 500oC K4SnO4

  • Восстанавливается водородом или углеродом до металлического олова:

SnO2 + 2 H2 → 500−600oC Sn + 2 H2O SnO2 + 2 C → 800−900oC Sn + 2 CO

Применение

В сочетании с оксидами ванадия его используют в качестве катализатора для окисления ароматических соединений в синтезе карбоновых кислот и ангидридов кислот, катализатора реакций замещения и гидролиза.

В датчиках газообразных горючих газов.

Плёнки из диоксида олова, нанесённые на стекло или керамику применяются в датчиках горючих газов в воздухе — метана, пропана, оксида углерода и других горючих газов. Нагретый до температуры в несколько сотен градусов Цельсия материал в присутствии горючих газов обратимо частично восстанавливается с изменением стехиометрического соотношения в сторону обеднения кислородом, что приводит к снижению электрического сопротивления плёнки. Для применения в датчиках газа изучалось легирование диоксида олова различными соединениями, например, оксидом меди II.

В электронной промышленности

Основное применение соединения для создания прозрачных токопроводящих плёнок в различных приборах — жидкокристаллических дисплеях, фотогальванических элементах и в других приборах. Нанесение плёнки вещества производится из газовой фазы разложением летучих соединений олова, для повышения электропроводности соединение обычно легируют сурьмой и соединениями фтора.

Также применяется для создания прозрачных проводящих обогревательных противообледенительных плёнок на стеклянной поверхности окон транспортных средств.

Применяется в материалах контактов электрических коммутационных аппаратов, например, серебряных контактов электромагнитных реле — в материал вводят 2—14 % диоксида олова. Ранее для этой цели использовали весьма токсичный оксид кадмия.

Легирование кобальтом и марганцем дает материал, который можно использовать, например, в высоковольтных варисторах.

Легирование диоксида олова оксидами железа или марганца образует высокотемпературный ферромагнитный материал.

В стекольной и керамической промышленности в качестве белого пигмента

Диоксид олова плохо растворяется в расплавленной силикатной или боросиликатной стекломассе и имеет высокий показатель преломления относительно силикатного связующего, поэтому его микрочастицы в составе стёкол рассеивают свет, придавая стеклянной массе молочно-белый цвет и используется в производстве матовых стёкол, глазурованной керамической настенной плитке, сантехнических фаянсовых изделиях и др.

Изменяя состав стекломассы и технологию её приготовления можно изменять степень матовости продукта, так как растворимость диоксида олова увеличивается при повышении температуры обжига и увеличении концентрации в стекломассе оксидов щелочных металлов ( Na2O , K2O ) и оксида бора B2O3 и снижается при увеличении содержания оксидов щелочноземельных металлов ( CaO , BaO ), оксидов алюминия, цинка и свинца. Чистый диоксид олова придаёт глазури белый цвет, который можно изменить добавлением оксидов других элементов, например, оксид ванадия придаёт глазури жёлтый цвет, хрома — розовый, сурьмы — серовато-синий.

Покрытия на стекле

Тончайшие плёнки диоксида олова (

0,1 мкм) применяются в качестве адгезионного подслоя для нанесения на поверхность стеклянной посуды (в основном на бутылках, банках, сортовой посуде) полимерного покрытия, например, полиэтиленового. Нанесение таких тонких плёнок производится разложением на поверхности горячего стеклянного изделия летучих соединений олова, например, тетрахлорида олова или оловоорганических соединений, например, трихлорида бутилолова.

В качестве абразивного материала

Микрокристаллы соединения имеют высокую твёрдость и применяется в составе полировальных паст и суспензий для полировки изделий их металлов, стекла, керамики, природных камней.

Безопасность

Соединение малотоксично, ЛД50 для крыс 20 г/кг перорально. Пыль соединения вредно влияет на органы дыхания. Предельно допустимая концентрация пыли в воздухе производственных помещений 2 мг/м 3 .

Источник