Олово висмут температура пайки

Олово висмут температура плавления

Сплав олово висмут сегодня является распространенным. Он широко применим в разных сферах нашей жизни. Используется при машино строительстве и в металлургии. И даже используется при разработке ядерного оружия. Им покрывают медную основу в качестве защиты от коррозии и предотвращение окисления меди.

После покрытия медь хорошо паяется, а также такое покрытие способствует сохранению меди своих полезных свойств. Висмут – металл, имеет цвет светло серебристый оттенок. В природе существует около восьми кристаллографических модификаций висмута.

Олово висмут температура плавления. Многие задаются вопросом, при каких температурах примусь олово – висмут. Сплавы висмута с другими легко плавными веществами, к примеру с оловом, обладают очень низкой температурой плавления, в некоторых случаях это может быть даже меньше 100 °C. Но в основном принято считать, что стандартная температура плавления олово висмута колеблется от 133-140 ºC.

Висмут часто в припоях используется в качестве свинца (его содержание в сплаве 58%). Он придает полученному припою легкоплавкость, но ухудшает смачиваемость. Такие полученные припои являются очень дорогими, на поставку такого метала часто устанавливают ограничения. Лучше всего не использовать такие сплавы при высоких температурах.

Можно сказать, что температура плавления бывает самой разной. Это зависит от того, какой припой используется для сплава. Поэтому исходя из самого полученного металла измеряют температуру плавления. На сегодняшний день такой сплав широко применим для покрытия разного типа и вида металлов. Также применим в производствах и даже в медицине.

Источник

Покрытие олова висмутом

Многие знают, что большим недостатком оловянных покрытий считается утрата возможности к паянию после продолжительного хранения. При изготовлении электронных приборов, оно недопустимо. Однако совместный сплав олово висмут создает надежное покрытие и дает много преимуществ в паянии.

Сплав олова висмута применяется в случае необходимости спаивания материала. Благодаря покрытию, материал получает защиту от ржавчины, кислотной среды и прочих вредных процессов. Чаще всего оно применяется в электротехнике, для получения защиты от воздействия воздуха, и используется в электронной промышленной отрасли. Процесс нанесения покрытия на изделие, в промышленности, имеет название гальваники.

Процесс гальваники

Гальваника является процессом нанесения защитного слоя металла электростатическим способом. Используется в промышленном и ювелирном производстве. Применяя покрытие олова висмутом, металл получает возможность производить паяние без использования вредоносных веществ. Само покрытие наносится на медные детали при помощи электролиза.

Перед началом процедуры гальваники, материал должен обезжириваться и промываться. Это необходимо для проведения работ по нанесению покрытия. Затем деталь помещается в специальную ванну вместе с трансформатором, который будет давать электролиз. Далее начинается процесс нанесения покрытия олова висмута. После окончания работы изделие промывается и обрабатывается до товарного вида.

Свойства покрытия

Покрытие олово висмута обеспечивает отличное скрепление с металлом. Может выдержать такие процессы как:

  • штамповка;
  • изгибы;
  • вытяжка;
  • прессовая посадка.

Сплав олово висмута обладает сильной выносливостью по отношению к коррозии металлов, предотвращая его появление в течении длительного периода. Он владеет высокой пластичностью, нейтрально относится к негативным средам, таким как сероводород. Обладает свойством образовывать токопроводящие иглы на поверхности в результате длительного хранения. Этим он схож с оловянным покрытием.

Покрытие считается лучшим среди остальных, благодаря длительному сроку хранения. Оно сохраняет все свои свойства, включая отличное паяние, в течение года. Покрытие олова висмута имеет серый цвет, но не редко встречается светло-серый оттенок.

Источник

Сказ о сплаве Розе и отвалившейся КРЕНке


Давным, давно, когда я был школьником и добывал радиодетали преимущественно из разных выброшенных на свалку плат, заметил я необычное явление в процессе распаивания очередной такой платы: некоторые пайки моментально отваливались от фольги, стоило в них ткнуть паяльником. Контактная площадка оставалась чистой от припоя, гладкой и серебристо облуженной, а капля припоя на выводе детали имела внизу такое же блестящее плоское основание.

Заметил и забыл до поры. А в позапрошлом году, принимая участие в научной экспедиции в Арктику, я неожиданно столкнулся с неожиданным выходом из строя прибора, с которым работал. Прибор был самодельным — делали его другие люди, но к счастью, снабдили меня схемой и всей документацией, взял я с собой на всякий случай и паяльник и необходимые приборы. Долго неисправность искать не пришлось: внутри корпуса валялся интегральный стабилизатор на 5 В в корпусе D-Pak, который просто отвалился от платы. У контактных площадок и «брюха» стабилизатора были такие же красивые блестящие поверхности.

Последний случай был со стареньким ноутбуком, у которого, по словам прежнего его хозяина, в каком-то подвале за тысячу рублей поменяли разъем питания после того, как старый перестал контачить. Со временем с контактом в этом разъеме снова возникли проблемы и я, обнаружив, что разъем просто плохо припаяли и он просто болтался в плате, взял и пропаял разъем, как следует. Но прошло время и неисправность вернулась.

Как вы догадались, причина у всех этих явлений одна и она упомянута в заголовке статьи и показана на КДПВ. Но откуда он взялся на платах и даже в ноутбуке?

В первых двух случаях виной всему чье-то рацпредложение, которое в какой-то момент стало чуть ли не общепринятым способом лужения печатных плат у радиолюбителей, и судя по всему, проникло и в производство. Кинул плату в смесь воды, глицерина и лимонной кислоты, нагретую до ста градусов, бросил туда немного гранул сплава Розе, разогнал расплавившийся сплав резиновым шпателем — вот и готовы красиво облуженные и легко паяющиеся дорожки. А ноутбук, как мы помним, побывал у неофициальных ремонтников, у которых есть один милый приемчик — как отпаять припаянное к массивным полигонам платы, да еще и бессвинцовым припоем, хилым паяльником. Для этого служит все тот же сплав Розе, который, сплавляясь с тугим бессвинцом, быстро его плавит и позволяет легко демонтировать разъем, не «угрев» на плате все вокруг и не отслоив медь от текстолита. И во всех трех случаях сплав Розе, смешавшись с припоем, резко понижал температуру его плавления, что приводило к неприятностям.

Читайте также:  Постройте примерный график для нагревания плавления кристаллизации олова

Казалось бы, немножко сплава Розе должно не очень сильно изменить свойства припоя. Но это не так. Почему — давайте вспомним, что сплав Розе — это тройная эвтектика в системе олово-свинец-висмут.

Поговорим об эвтектике

Давайте посмотрим на фазовую диаграмму двухкомпонентной системы с неограниченной растворимостью в жидком состоянии и незначительной растворимостью в твердом. По горизонтальной оси здесь отложен состав сплава, а по вертикальной — температура. А линии на ней представляют собой зависимости температур начала плавления (солидус — ADCB) и конца плавления (ликвидус — AEB). Еще есть две ветви, отделяющие области однородного твердого раствора от двухфазной области, но они нас сейчас не будут интересовать. В области между солидусом и ликвидусом мы имеем двухфазную систему из расплава и твердой фазы.

Точка E — особая, в ней солидус и ликвидус касаются друг друга: сплав такого состава наиболее легкоплавкий и плавится он сразу, подобно чистому металлу. Это и есть эвтектика. Хороший припой обычно представляет собой именно эвтектику и именно таким является ПОС-61 или ПОС-63.

А если состав сплава не соответствует эвтектике? Приходилось вам когда-нибудь паять припоем ПОС-40, который обычно продавался в советских хозмагах в виде толстого прутка? Под жалом паяльника он сначала превращается в своеобразную кашу, а потом только плавится окончательно. Затвердевает он в обратном порядке, сначала превратившись в кашу, а затем застыв окончательно.

А если мы возьмем олово и добавим в него всего лишь 5% свинца? Будет абсолютно то же самое, только между солидусом и ликвидусом «каша» будет практически твердая. Но непрочная, так как жидкая фаза будет заполнять тонкие прослойки между кристаллами.
И вот теперь обратите внимание, что линия солидуса горизонтальна. Это означает, что плавление любого сплава олова и свинца (в диапазоне составов 2,6-80,5% свинца) начнется при одинаковой температуре, независимо от его состава. При той же температуре закончится затвердевание, и кстати — состав этих последних капель расплава равен составу эвтектики.

А теперь добавим ножек висмут

А если добавить третий компонент, который также свободно растворяется в жидком состоянии, но не растворяется в твердом… Тут нам нужно уже рассматривать трехкомпонентную систему.
В общем-то, такая система ведет себя аналогично двухкомпонентной. Тут тоже есть состав из трех компонентов, где температуры солидуса и ликвидуса равны. И температура ее плавления еще ниже, чем температуры двойных эвтектик в каждой из трех двойных систем, составляющих тройную.

На данном рисунке изображен ликвидус, который из линии превратился в поверхность. А солидус… Солидус — это горизонтальная плоскость почти на весь треугольник (кроме свинцового угла — там интерметаллическая фаза). Для системы свинец-олово-висмут ее положение соответствует постоянной температуре 96°С — температуре плавления сплава Розе.
Так что если мы добавим к сплаву олово-свинец немного висмута, мы получим сплав, который начинает плавиться при 96°С.

Правда, висмут заметно растворяется в олове, а особенно в свинце. Из-за этого плоскость солидуса отодвинута от края треугольника — разреза олово-свинец. Она отстоит примерно на 15% висмута от эвтектики олово-свинец, «загибаясь» вверх при приближении к краю. Поэтому количество сплава Розе, которое приведет к неприятностям — не бесконечно мало, а примерно 10-20%. Но к сожалению, это лишь в идеальных условиях. В реальных и повредит и меньшее количество. Причина этому то, что пайка — процесс быстрый.

Кинетический фактор

Кинетика — это раздел химии, посвященный скорости протекания химических процессов. Пайка — процесс быстрый и кратковременный, точка пайки быстро разогревается до плавления припоя и быстро остывает. К чему это ведет?

Представьте себе контактную площадку на плате, облуженную сплавом Розе (специально или после того, как этим сплавом воспользовались для отпайки неисправной детали). К ней припаяли контактную площадку и убрали паяльник. Припой застыл. Время пайки — секунды. За это время припой и сплав Розе перемешаться не успеют, особенно если паяют SMD-элемент и перемешиванию мешает узкий зазор между контактной площадкой и площадкой вывода. В результате на месте бывшего сплава Розе на контактной площадке получается слой обогащенного висмутом слоя, который начнет плавиться при температуре 96°С, даже если общее количество загрязняющего спай висмута, казалось бы, недостаточно. Именно потому и отваливались детали от легкого касания паяльником, потому и образовывалось «зеркало».

Синим на этом рисунке показан сплав Розе, а серым — припой. Слева — до, а справа — после пайки.

Чем грозит?

Когда припоем со сплавом Розе припаяна греющаяся деталь, результат понятен: деталь просто отвалится. При температуре выше 96°С кристаллические зерна припоя разделены жидкими прослойками и прочность у него — как у мокрого песка. Казалось бы, если деталь не греется, бояться нечего? Но тут вступает в действие тот фактор, что от момента пайки до момента окончательного затвердевания проходит достаточно много времени. И в это время малейшее усилие на спай его разрушит, возникнут трещины. Получается своего рода «ложная пайка»: вроде все припаяно, контакт есть — а надежности нет, со временем этот контакт пропадет, особенно при механических нагрузках, как на разъеме питания ноутбука.

Читайте также:  Что не является сплавом сталь олово бронза

Выводы

Не пользуйтесь сплавом Розе ни для лужения плат, ни для выпаивания деталей. А если нужно припаять сплавом Розе какую-нибудь деликатную и очень боящуюся перегрева деталь, заведите себе для этого отдельный паяльник или отдельное жало. Достойной альтернативой лужению сплавом Розе является химическое лужение. Только обязательно нужно нанести на «химическое» олово флюс и оплавить его.
Когда деталь не нагружена механически и вы ее все же отпаяли сплавом Розе (или это сделал кто-то до вас), не поленитесь и перед пайкой приклейте ее к плате каким-нибудь не особо прочным клеем (чтобы при случае можно было бы и оторвать). Этим вы в некоторой степени застрахуете ее от смещения во время застывания припоя и сделаете пайку более надежной. Также можно пройтись по площадкам со сплавом Розе большой каплей припоя на широком жале паяльника, затем удалить припой оплеткой и повторить эту операцию еще 1-2 раза, но в зависимости от качества платы существует риск, что дорожки не выдержат.

PS:
Подобная же ситуация возникает, если вы вдруг столкнетесь с оловянно-висмутовым припоем. Такой припой, будучи малотоксичным (висмут гораздо менее токсичен, чем свинец) и легкоплавким (Tпл = 139°С), был бы отличным бессвинцовым припоем, если бы не образование тройной эвтектики при попадании свинца. Например, при ремонте платы, паяной таким припоем, с использованием обычного оловянно-свинцового припоя. Тем не менее, такой припой, как указывает Habra_nik, имеет определенный уровень популярности в Японии. Так что нужно быть внимательным при ремонте современной японской электроники.

Источник

Легкоплавкие припои для пайки

Особолегкоплавкие припои — с температурой ликвидуса в интервале 39—145 °С, находят применение, когда опасен перегрев паяемого материала или материала деталей изделия, не подвергаемых пайке, но испытывающих нагрев при термическом цикле пайки, или при ступенчатой (повторной) пайке.

Такие припои нашли особенно широкое применение в электронике, электротехнике, в частности, при изготовлении приборов противопожарного назначения.

В последние 5—10 лет целью легирования припоев явилось повышение их прочности, хладостойкости, снижения электросопротивления и токсичности, снижения температурного коэффициента линейного расширения (особенно предназначенных для пайки монтажа ЭВМ и счетных машин), сообщение припою магнитных свойств, необходимых при пайке магнитных и электромагнитных приборов, средств автоматизации.

Весьма важной задачей легирования было повышение коррозионной стойкости соединений меди, паянной свинцовыми припоями, и алюминия, паяного оловянными припоями. Для особо-легкоплавких и легкоплавких припоев большое значение имеет возможность варьирования шириной их интервала затвердевания с целью устранения усадочной пористости в паяных швах, а также повышения содержания первичных кристаллов с целью проведения абразивного лужения паяемых сплавов. Припои, весьма слабо взаимодействующие с паяемым металлом, легировали с целью активирования такого взаимодействия.

Галлиевые припои

Низкая температура плавления и хорошая смачивающая способность галлия служат основанием для использования его в качестве компонента припоев.

Галлий обладает необычайно высокой способностью проникать по границам зерен некоторых металлов, особенно легкоплавких — олова, кадмия, свинца, цинка, а при нормальных температурах и по границам алюминия с образованием легкоплавкой эвтектики, что связано с его малой растворимостью в этих металлах при температуре 20 °С. Алюминий после лужения галлием при температуре ниже 120 °С становится хрупким и непрочным вследствие образования по границам его зерен особолегкоплавкой эвтектики, богатой галлием, с температурой плавления ниже 29,7 °С. Выше температуры 120 °С галлий образует с алюминием сравнительно широкую область твердых растворов и при достаточной выдержке способен диффундировать с границ зерен внутрь их, что приводит к полному или частичному восстановлению пластичности и прочности паяемого металла.

Галлиевые пасты позволяют собирать изделия под пайку с большими зазорами, что важно для типов соединений с замкнутыми паяными швами, например, телескопических, когда затруднен прижим соединяемых деталей, а сборка с капиллярными зазорами существенно удорожает процесс.

Наполнителем галлиевых паст — припоев служат тонкодисперсные порошки, главным образом меди, серебра, никеля. Для улучшения свойств легкоплавкой составляющей паст в галлий добавляют индий, олово (табл. 5). Дисперсность наполнителя галлиевых паст обычно составляет 35—71 мкм. Припой марки № 3 (табл. 5) применен для пайки деталей электровакуумных приборов, работающих при нагреве до 850—1040 °С без нарушения вакуумной плотности (по данным Б. Ф. Чугунова и др.).

Некоторые двойные сплавы галлия с медью, серебром, золотом, магнием, титаном, никелем, кобальтом могут быть пригодны в качестве припоев для диффузионной пайки титана, меди, ряда металлов и их сплавов вследствие образования с галлием широкой области твердых растворов.

Галлий и галлиевые пасты интенсивно окисляются при нагреве на воздухе выше 400 °С и превращаются при этом в темную порошкообразную массу. Поэтому пайку галлиевыми пастами при температурах выше 400 °С необходимо вести в вакууме (р = 1,33- 10 -2 Па).

Галлий в качестве основы полностью расплавляемых припоев применяют весьма редко. Галлиевые припои в последнее время используют для диффузионной пайки меди. Диффузионная пайка алюминиевых сплавов чистым галлием выполнена В. Вуихом при толщине слоя этого металла 10—15 мкм и давления в процессе пайки (0,15—0,30) 10 -3 Па, с последующей гомогенизацией после пайки в течение 3—20 ч при температурах 250 и 500 °С. При этом получено равнопрочное соединение с незначительным содержанием в нем галлия.

Для предотвращения коробления и растрескивания кристаллов в силовых полупроводниковых приборах и для повышения циклической прочности приборов в режимах «включено-выключено» нашел применение припой, состоящий из галлия и олова (до 60 % Ga).

По данным Н. Ульмана, трубки из коррозионно-стойкой стали, паянные при температуре 1250 °С галлиевыми пастами, изготовленными путем растирания жидкого галлия с порошком никеля, при ширине зазора 20—100 мкм, имеют шов, аналогичный по структуре паяемому металлу. Такие паяные соединения имеют высокую коррозионную стойкость в жидком натрии.

Припои с висмутом

Висмут — металл малопластичный, поэтому его редко применяют для пайки металлов и сплавов. Однако сплавы, богатые висмутом, используют в качестве особолегкоплавких припоев (табл. 6). Температура начала плавления таких припоев находится в интервале 46,7—144 °С.

Для припоев, богатых висмутом, характерно увеличение объема при переходе из жидкого состояния в твердое, а также при охлаждении после затвердевания. Припои с висмутом слабо смачивают некоторые металлы, например железо, конструкционные стали, и отличаются сравнительно высоким электросопротивлением и низкими механическими свойствами. Для улучшения смачиваемости висмутовыми припоями эти металлы перед пайкой оцинковывают и лудят оловянно-свинцовым припоем. Висмутовые припои применяют чаще всего для пайки меди.

Для улучшения способности к смачиванию и сцеплению с паяемым металлом — медью в висмутовые припои вводят до 0,5—5 % железа, никеля, кобальта, платины, иридия, рутения, осмия, рения, палладия, золота.

Для усиления эффекта увеличения объема висмутового припоя при затвердевании с целью устранения течей в емкостях вводят германий, кремний, галлий. Добавка до 0,5 % Ge в такие припои к тому же упрочняет их.

Применение в практике пайки нашли особолегкоплавкие сплавы эвтектического состава, содержащие висмут, свинец, олово, кадмий, с температурой плавления ниже 150 °С.

Использование легкоплавких припоев, таких, как эвтектика Bi—Sn вместо Sn—Pb, позволяет исключить из шва свинец и существенно снизить тепловые напряжения в изделиях. Пайка с бесканифольным флюсом возможна при 170 °С.

Временное сопротивление разрыву соединений из меди, паянных висмутовыми припоями, приведенными в табл. 7, весьма низкое (14,7 МПа).

Висмут образуют с алюминием диаграмму состояния монотектического типа. Предельная его растворимость в алюминии при температуре 657 °С составляет менее 0,2 %. Растворимость алюминия в висмуте при температуре 250 °С ничтожна. Поэтому соединения из алюминия, паянные висмутовыми припоями, обладают склонностью к щелевой коррозии. Для повышения коррозионной стойкости паяных соединений из алюминия и его сплавов в висмутовые припои вводят 1 —10 % Zn. Припой такого типа имеет, например, состав (%) :40—60 Bi; 8—25 Pb; 7—25 Sn; 15 Cd; 1 — 10 Zn.

По данным Танака Масанао, в электронике используют висмутовые припои для пайки деталей из меди, латуни, никеля, свинца состава (%): 22 Sn, 28 Pb, Bi — остальное (tпл = 100 о С) и 43 Sn, Bi — остальное (tПл = 138 °С). Введение висмута в припои Zn—(65—70 %) Sn— (3—9%) Bi с температурой плавления 330—370 °С позволяет использовать его для пайки ферритов и является заменителем токсичного припоя Zn—Cd.

При достаточной ширине интервала затвердевания висмутовых припоев при введении в них цинка и германия возможен процесс абразивно-кавитационной пайки алюминиевых сплавов.

Припои с индием.

Особолегкоплавкие припои с индием обладают рядом ценных свойств; некоторые из них применяют для пайки стекла [эвтектический припой, содержащий 52 % In и 48 % Sn (tПл = 117 °С) без флюса]; его наносят на поверхность стекла путем натирания. Ряд индиевых припоев обладает высокой

сопротивляемостью коррозии в щелочных растворах. Введение в некоторые припои индия (>25% In) обеспечивает высокую коррозионную стойкость их в щелочах. Примером могут служить припои состава (% : 1) 37,5 Sn; 37,5 Pb; 25 In и 2) 75 Pb и 25 In.

Смачиваемость меди и ее сплавов этими припоями не хуже, чем оловянно-свинцовыми, не содержащими индия. Температурный интервал кристаллизации первого припоя 135—180°С, температура солидуса второго припоя 230 °С.

Индиевый припой со свинцом (50 % In —50 % Pb) по своим технологическим свойствам близок к припоям Sn—Pb, но в отличие от них слабо растворяет золото и не охрупчивает его. Соединение из золота, выполненное этим припоем, обладает в 100 раз более высокой термостойкостью к термоциклированию в интервале температур — 50- +155 °С, чем соединения, паянные припоем, содержащим 63 % Sn — 37 Pb, хотя сопротивление срезу нахлесточных соединений ниже при применении припоя с индием. Соединения, выполненные припоем 50 % In —50 % Pb, рекомендуют использовать в изделиях, работающих при температуре до 125 °С.

Индий, благодаря своей высокой способности смачивать различные металлы и неметаллические материалы, введен в припой системы Т1 — In — Hg, нашедший применение для пайки полупроводников, стекла, пластмассы, волокон металлов. По данным В. Д. Кинга, полупроводник PbTl паяют припоем состава (ат. %): 33 Hg, 20 Т1, 47 In без флюса и без особой подготовки поверхности.

Припой на основе индия (In —10 % Ag) с температурой плавления 260 °С также слабо растворяет толстые золотые покрытия, хорошо их смачивает и обеспечивает требуемую прочность при термоциклировании. Его применяют для пайки толстых золотых покрытий взамен припоев 63 % Sn —37 % Pb [16].

Сверхпроводимость медных соединений может быть обеспечена при пайке легкоплавкими припоями состава (%):20—40 Pb, 10—15 Sn, 1 2 3 4 5 6

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Читайте также:  Вода плюс хлорид олова
НОВОСТИ

17 Ноября 2021 14:04
Электрический мини-самосвал своими руками

Источник

Adblock
detector