Определение марки чугуна по химическому составу

Чугун. Марки, свойства и применение чугунов

Чугун — самый распространенный железоуглеродистый нековкий литейный материал, содержащий свыше 2% углерода, до 4,5% кремния, до 1,5% марганца, до 1,8% фосфора и до 0,08% серы. В практике применяют чугуны, содержащие 3÷3,5% углерода.

Чугун обладает высокими литейными свойствами, поэтому широко используется в литейном производстве в качестве конструкционного материала. Он хорошо обрабатывается резанием. Из чугуна, имеющего невысокий коэффициент трения, изготовляют подшипники скольжения. Специально обработанный чугун (высокопрочный) по показателям качества успешно конкурирует со стальным литьем и кованой сталью.

Недостаточная прочность и большая хрупкость чугуна объясняются наличием в нем крупных включений углерода в виде графита.

Введение в жидкий чугун небольшого количества магния и церия изменили форму графита, он стал шаровидным. Чугун приобрел прочность и утратил хрупкость. Такой чугун (его называют высокопрочным) по-своему качеству не уступает конструкционным углеродистым сталям. Стойкость деталей, изготовленных из этого чугуна, увеличилась почти в три раза.

Углерод в чугунах может находиться в виде химического соединения — цементита (такие чугуны называют белыми) или частично или полностью в свободном состоянии в виде графита — (такие чугуны называют серыми).

Чугуны состоят из металлической основы (перлита, феррита) и неметаллических включений графита. Они различаются главным образом формой графитовых включений. Белый чугун имеет ограниченное применение. Некоторые отливки, от которых требуется повышенная твердость поверхностного слоя, изготовляют из отбеленного чугуна. Поверхностный слой его состоит из белого чугуна, а сердцевина — из серого. Величину и твердость отбеленного слоя регулируют путем изменения химического состава чугуна и скорости затвердевания отливки.

Чугун серый

Серый чугун широко применяется в машиностроении. Такое название он получил по серому цвету излома, обусловленному наличием в структуре чугуна свободного углерода в виде графита. По виду металлической основы различают серые чугуны перлитные, перлитно-ферритные и ферритные.

Таблица 1. Чугуны серые литейные, их основные свойства и применение

Марка σв МПа НВ Свойства и применение
Сч10 275 139-274 Малоответственные отливки с толщиной стенок до 15 мм (корпуса, крышки, кожухи и др.), детали, для которых прочностная характеристика не является обязательной,- опоки, арматуру, рамки, сковороды, декоративные детали, массивные строительные колонны, фундаментные плиты
СЧ15 314 160-224 Малоответственные отливки с толщиной стенок 10 — 30 мм (трубы, корпуса клапанов, вентили при давлении — до 20 МПа и др.), корпусные малонагруженные детали, подмоторные плиты, рычаги, шкивы, маховики, емкости для масла и охлаждающей жидкости, корпуса фильтров, фланцы, крышки, звездочки цепных передач
СЧ18 354 167-224 Ответственные отливки с толщиной стенок 10 — 20 мм (шкивы, зубчатые колеса, станины, суппорты и др.)
СЧ20 397 167-236 Ответственные отливки с толщиной стенок до 30 мм (блоки цилиндров, поршни, тормозные барабаны, каретки и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются требования герметичности при давлении до 8 МПа (80 кгс/см 2 ), корпусов, коробок передач, шпиндельных бабок, балансиров, планшайб, гильз, кареток, цилиндров, насосов, золотников, арматуры, компрессоров
СЧ25 450 176-245 Ответственные отливки с толщиной стенок до 40 мм (кокильные формы, поршневые кольца и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются повышенные требования к герметичности
СЧ3О 490 177-250 Ответственные отливки с толщиной стенок до 60 мм (поршни, гильзы дизелей, рамы, штампы и др.), для изготовления кронштейнов, салазок столов и суппортов, деталей с поверхностной закалкой, цилиндров, корпусов насосов, дизелей и двигателей внутреннего сгорания, поршневых колец, коленчатых и распределительных валов
СЧ35 СЧ45 540 193-264 Ответственные высоконагруженные отливки с толщиной стенок до 100 мм (малые коленчатые валы, детали паровых двигателей и др.) деталей, для изготовления к которым предъявляются требования герметичности при давлении свыше 8 МПа

Графит обладает низкими механическими свойствами. Он нарушает целостность металлической основы. Располагаясь между зернами металлической основы, графит ослабляет связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкую пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки к показателям стали, имеющей такую же структуру, как у металлической основы чугуна.

Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, повышает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.

Механические свойства серого чугуна могут быть улучшены равномерным распределением мелкопластинчатого графита в отливке. Это достигается путем специальной обработки — модифицирования, когда в жидкий чугун перед его разливкой вводят добавки, которые образуют дополнительные центры графитизации, в результате чего получается мелкопластинчатый графит. Чугун с таким графитом называют модифицированным. От обычного серого чугуна он отличается более высоким сопротивлением разрыву, однако пластичность и вязкость его при модифицировании не улучшаются.

По ГОСТ 1412-85 буквы СЧ в обозначении марки чугуна означают — серый чугун. Двузначная цифра соответствует пределу прочности при растяжении σв МПа. Стандарт нормирует предел прочности серых чугунов σв = 274÷637 МПа, твердость — 143÷637 НВ и химический состав.

Основные свойства серого чугуна и его применение приведены в таблице 1.

Чугун высокопрочный с шаровидным графитом

Высокопрочный чугун получают путем введения магния (до 0,9%) и церия (до 0,05%) в жидкий серый чугун перед разливкой его в формы. Основная часть этих модификаторов испаряется, окисляется и переходит в шлак, так что в твердом металле обнаруживается не более 0,01% этих элементов. Магний и церий активно удаляют из чугуна серу. Но главная роль их заключается в том, чтобы изменить чешуйчато-пластинчатую форму графита на шаровидную. После модифицирования чугуна магнием или церием в ковш добавляют 75%-ный ферросилиций (сплав железа с кремнием). В отличие от модифицированного серого чугуна высокопрочный чугун имеет более высокое содержание углерода и кремния и пониженное содержание марганца.

Металлическая основа высокопрочного чугуна состоит из феррита и перлита или только из перлита. В этом чугуне сочетаются ценные свойства стали и чугуна. Он обладает сравнительно высокой прочностью при достаточной пластичности и вязкости. Высокопрочный чугун с успехом заменяет стальное литье и даже стальные поковки, что дает большой экономический эффект. Изделия из высокопрочного чугуна благодаря его повышенной износостойкости могут работать в условиях трения. Высокопрочный чугун лучше, чем серый, сохраняет свою прочность при нагреве, поэтому может применяться для работы при температурах до 400°С (серый чугун выдерживает температуру до 250°С).

Читайте также:  Длина ввинчиваемого конца шпильки чугун серый

ГОСТ 7293-85 нормирует предел прочности σв, предел текучести σт, относительное удлинение δ и твердость НВ высокопрочных чугунов. Требования к отливкам из этих чугунов устанавливаются нормативно-технической документацией. Принцип маркировки высокопрочных чугунов (ВЧ) отличается от маркировки серых чугунов. В обозначение их марки входят два числа — первое указывает предел прочности на разрыв, второе — относительное удлинение. Например, марка чугуна ВЧ 42-12 означает, что данный чугун имеет предел прочности σв = 412 Н/мм 2 (42 кгс/мм 2 ) и относительное удлинение δ =12%.

Стандарт предусматривает 10 марок высокопрочных чугунов: ВЧ 38-17, ВЧ 42-12, ВЧ 45-5, ВЧ 50-7, ВЧ 50-2, ВЧ 602, ВЧ 70-2, ВЧ 80-2, ВЧ 100-2, ВЧ 120-2. Стандарт или справочник дает дополнительные сведения об этом чугуне: предел текучести σт = 274 Н/мм 2 (28 кгс/мм 2 ), твердость-140÷200 НВ.

Из высокопрочных чугунов изготовляют многие детали (в том числе фасонные), которые ранее получали из стали, базовые и корпусные детали повышенной прочности (корпуса и станины станков, крупные планшайбы, гильзы, каретки, цилиндры, кронштейны, зубчатые колеса, накладные направляющие станков и детали с поверхностной закалкой). Они заменяют стали Сталь 20Л, 25Л, ЗОЛ и 35Л.

Чугун ковкий

В структуре ковкого чугуна графит имеет хлопьевидную форму. Такой графит называют углеродом отжига. По сравнению с серым чугуном ковкий чугун обладает более высокой прочностью, пластичностью и вязкостью. Свое название он получил потому, что имеет повышенную пластичность. Ковке в прямом понимании этого слова чугун не подвергается.

Процесс получения отливок из ковкого чугуна включает две стадии: изготовление фасонных отливок из белого чугуна и отжиг полученных отливок с целью графитизации цементита. При отжиге происходит разложение цементита белого чугуна с образованием графита хлопьевидной формы. В результате этого хрупкие и твердые отливки становятся пластичными и более мягкими. В зависимости от условий и режима отжига структура чугуна может иметь ферритную (Ф), перлитную (П) и ферритно-перлитную металлическую основу. Наибольшее распространение получил пластичный ферритный ковкий чугун. Отжиг ковкого чугуна-весьма продолжительный процесс, занимающий 70-80 ч. Однако его можно ускорить путем закалки отливок из белого чугуна перед графитизацией, а также модифицированием чугуна алюминием, бором, висмутом или титаном. Существуют и другие способы ускорения процесса отжига. Использование указанных способов позволяет сократить продолжительность отжига до 35-40 ч.

Таблица 2. Чугуны ковкие, их основные свойства и применение

Марка НВ Свойства и применение
КЧ 35-10 КЧ37-12 160 Чугуны ферритного класса используют для производства деталей,

эксплуатируемых при высоких динамических и статических нагрузках

(картеров, редукторов, ступиц, крюков, скоб, задних мостов, кронштейнов)

КЧ 30-6

КЧ 33-8

160 Для изготовления менее ответственных деталей

(хомутов, гаек, вентилей, деталей сельскохозяйственных машин,

глушителей, фланцев, муфт, тормозных деталей, педалей,

гаечных ключей, колодок, кронштейнов)

КЧ 45-7 203 Ковкие чугуны перлитного класса марок обладают высокой прочностью,

умеренной пластичностью и хорошими антифрикционными свойствами.

Из них получают вилки карданных валов, шестерни, червячные колеса,

поршни, подшипники, звенья и ролики конвейерных цепей, втулки,

муфты, тормозные колодки, коленчатые валы

КЧ 50-5 226
КЧ 55-4 236
КЧ 60-3 264
КЧ 65-3 264
КЧ 70-2 280
КЧ 80-1,5 314

По ГОСТ 1215-79 маркируется ковкий чугун по тому же принципу, что и высокопрочный. Например, марка чугуна КЧ 33-8 означает, что данный чугун имеет предел прочности σв = 32.4 Н/мм 2 (33 кгс/мм 2 ) и относительное удлинение δ =8 %.

Отливки из ковкого чугуна можно получить с сечением до 55 мм. При большем сечении в сердцевине отливок образуется пластинчатый графит и чугун становится не пригодным для отжига. В машиностроении чаще применяют высокопрочный чугун, который получают при менее сложных и более дешевых технологических процессах, чем процессы производства ковкого чугуна.

Основные свойства ковкого чугуна и его применение приведены в таблице 2.

Чугун легированный

Свойства чугуна можно улучшить путем введения в его расплав легирующих элементов, оказывающих благоприятное влияние не только на его металлическую основу, но также на форму и размеры графитных включений, способствующих значительному измельчению структуры чугуна.

Требования к легированным чугунам для отливок с повышенной жаростойкостью, коррозионной стойкостью, износостойкостью или жаропрочностью регламентированы ГОСТ 7769-82. По основному легирующему элементу чугуны со специальными свойствами подразделяют на пять видов: хромистые, кремнистые, алюминиевые, марганцевые и никелевые, маркируется легированный чугун по тому же принципу, что и высокопрочный. Буква Ч означает чугун, буква Ш — шаровидная форма графита, буквы русского алфавита, соответствующие легирующим химическим элементам, и цифры после букв означают приблизительное содержание легирующих элементов в целых процентах. Например, марка чугуна ЧХ16 означает, что данный легированный чугун содержит хрома 16%.

Основные свойства легированного чугуна и его применение приведены в таблице 3.

Таблица 3. Чугуны легированные, их основные свойства и применение

Источник

Марки чугуна

Чугун литейный
Л1 Л2 Л3 Л4 Л5
Л6 ЛР1 ЛР2 ЛР3 ЛР4
ЛР5 ЛР6 ЛР7
Чугун передельный
П1 П2 ПВК1 ПВК2 ПВК3
ПЛ1 ПЛ2 ПФ1 ПФ2 ПФ3
Чугун низколегированный
ЧН2Х ЧН3ХМДШ ЧНМШ ЧНХМД ЧНХМДШ
ЧНХТ ЧС5 ЧС5Ш ЧХ1 ЧХ2
ЧХ3 ЧХ3Т ЧЮХШ
Чугун высоколегированный
ЧГ6С3Ш ЧГ7Х4 ЧГ8Д3 ЧН11Г7Ш ЧН15Д3Ш
ЧН15Д7 ЧН19Х3Ш ЧН20Д2Ш ЧН4Х2 ЧС13
ЧС15 ЧС15М4 ЧС17 ЧС17М3 ЧХ16
ЧХ16М2 ЧХ22 ЧХ22С ЧХ28 ЧХ28Д2
ЧХ28П ЧХ32 ЧХ9Н5 ЧЮ22Ш ЧЮ30
ЧЮ6С5 ЧЮ7Х2
Чугун с вермикулярным графитом для отливок
ЧВГ30 ЧВГ35 ЧВГ40 ЧВГ45

Чугуном называют железоуглеродистые сплавы (содержащие также то или иное количество примесей и легирующих элементов), затвердевающие с образованием эвтектики. Следовательно, в отличие от стали, чугун не может приобрести однофазное строение (например, аустенитное) при термической обработке. Согласно диаграмме состояния сплавов Fe—С (рис. 1), область чугуна охватывает сплавы, содержащие свыше 2,11% С. Практически же в качестве указанного граничного содержания углерода принято считать 2% С. С повышением содержания легирующих элементов эта граница, как правило, смещается в сторону меньших концентраций углерода. Так, многие высокохромистые, высококремнистые (например, ферросилиды), высокоалюминиевые сплавы железа содержат значительное количество эвтектики и условно считаются чугуном, несмотря на весьма низкое содержание углерода.

Присутствие эвтектики в структуре чугуна обусловливает его использование исключительно в качестве литейного сплава (работы по прокатке чугуна, особенно высокопрочного с шаровидным графитом, дали некоторые положительные результаты, но промышленного применения не нашли; перспективной является прокатка низкоуглеродистого низкокремнистого белого чугуна).

Чугун менее прочен и более хрупок, чем сталь, но дешевле стали и хорошо отливается в формы. Поэтому чугун широко используют для изготовления литых деталей. Углерод в чугуне может содержаться в виде цементита (Fe3C) или графита. Цементит имеет светлый цвет, обладает большой твердостью и трудно поддается механической обработке. Графит, наоборот, темного цвета и достаточно мягок. В зависимости от того, какая форма углерода преобладает в структуре, различают два основных вида чугуна: белый и серый.

По степени эвтектичности чугун подразделяют на доэвтектический, эвтектический и заэвтектический (см. рис. 1). Неправомерно принято отождествлять степень эвтектичности чугуна со степенью «насыщенности». Последняя относится как к чугуну, так и к стали и отражает лишь отношение содержания углерода в сплаве к эвтектическому или, с учетом влияния кремния и фосфора на смещение эвтектической точки влево.

Чугун считается эвтектическим, когда углеродный эквивалент равен 4,2—4,3%.

По содержанию дополнительных компонентов чугун подразделяют на нелегированный, низколегированный, средне- и высоколегированный. Нелегированным считают чугун, содержащий до 3,5—4% Si, до 1,5—2% Мп, до 0,3% Р, до 0,2— 0,25% S и до 0,1% таких элементов, как Cr, Ni, Си. В низколегированном чугуне содержание каждого из перечисленных легирующих элементов обычно не превышает 1,0—1,5%, в среднелегированном оно может достигать 7%, а в высоколегированном превышает 7—10%. Добавки сотых и даже тысячных долей процента таких элементов, как магний, азот, бор, висмут, считаются легирующими (микролегирование, модифицирование).

По степени графитизации чугун подразделяют на белый (практически не графитизированный), отбеленный или половинчатый (частично графити-зированный) и серый (в значительной степени или полностью графитизированный). Ковким называют чугун, полученный из белого путем его графитизации в твердом состоянии при термической обработке.

Белый чугун представляет собой сплав, в котором весь или практически весь избыточный углерод, не находящийся в твердом растворе в железе, присутствует в виде цементита Fe3C (или специальных карбидов в легированном чугуне). В нелегированном чугуне цементит представляет собой метастабильную фазу, способную распадаться с образованием железа и графита. На рисунке выше линии метастабильных равновесий (цементитная система) PSK, ES, ECF и CD показаны сплошными, а линии стабильных равновесий (графитная система) P`S`К`, E`S`, E`C`F` и C`D` —- пунктирными (в физической химии металлов принят обратный порядок обозначения).

В неполностью графитизированном сером чугуне эвтектоидное превращение протекает не в стабильной (графитной), а в метастабильной (цементитной системе) и аустенит превращается не в феррито-графитный эвтектоид, а в феррито-цементит-ную смесь — перлит. При этом наличие перлитного цементита и даже небольшого количества вторичного цементита (выпадающего из аустенита при его охлаждении в соответствии с линией метастабильного равновесия ES на рисунке выше) не является признаком отбела серого чугуна.

В производственной практике чаще всего наблюдаются случаи, когда эвтек-тоидное превращение протекает частично в стабильной и частично в метастабильной системах. Получающийся перлито-ферритный чугун обладает свойствами, приближающимися к свойствам перлитного или ферритного серого чугуна в зависимости от процентного содержания феррита и перлита в структуре металлической основы.

При отжиге белого чугуна на ковкий графит выделяется в виде более компактных включений, в результате чего металл приобретает определенные пластические свойства (откуда и название этого вида чугуна). Как и серый чугун, ковкий чугун может быть полностью и неполностью графитизированным и подразделяется соответственно на ферритный, феррито-перлитный и перлитный. Ледебуритного или вторичного цементита в ковком чугуне не должно быть (за исключением отдельных изолированных, так называемых «остаточных» карбидов). Половинчатый ковкий чугун промышленного применения не нашел.

В конце сороковых годов был изобретен метод модифицирования чугуна магнием, церием (а в настоящее время также иттрием и рядом других элементов), при котором графитные включения приобретают шаровидную или близкую к ней форму. Такой сплав фактически является разновидностью серого чугуна, однако ввиду приобретения им ряда специфических свойств (сочетания высокой прочности и пластичности, повышенной ударной вязкости) его классифицируют отдельно под названием «высокопрочный» чугун (ВЧ) или чугун с шаровидным графитом (ЧШГ). В зависимости от использованного модификатора его также называют магниевым, либо цериевым чугуном. В зарубежной литературе его часто называют «пластичным» чугуном (ductile iron). Высокопрочный чугун так же подразделяется на перлитный, перлито-ферритный и ферритный. В промышленности используют также отбеленный чугун с шаровидным графитом.

Часто модифицирование магнием или церием приводит к практически полному отбелу чугуна. После графитизирующего отжига в металле образуются шаровидные включения графита. Такой материал фактически представляет собой разновидность ковкого чугуна. Однако ввиду ряда специфических особенностей (кратковременности отжига, обусловленной высоким содержанием кремния в металле и отсутствием инкубационного периода) его классифицируют в одной группе с высокопрочным чугуном.

Таким образом, значительно графитизированный чугун условно подразделяют на серый (СЧ), ковкий (КЧ) и высокопрочный (ВЧ), хотя в ряде случаев провести между ними границу очень трудно.

Серый, ковкий и высокопрочный чугун классифицируют по механическим свойствам. Согласно общей классификации принято следующее деление:

По специальным свойствам чугун подразделяют на износостойкий, антифрикционный, коррозионностойкий, жаростойкий, немагнитный.

По твердости чугун подразделяют на:

Мягкий чугун HB269

По прочности чугун подразделяют на:

Обыкновенной прочности 2

Повышенной прочности = 20-38 кГ/мм 2

Высокой прочности > 38кГ/мм 2

В белом чугуне почти весь углерод содержится в связанном состоянии в форме цементита. Такой чугун имеет в изломе светло-серый цвет, очень тверд, почти не поддается механической обработке и поэтому не применяется для изготовления деталей, а используется для переделки в сталь и для изготовления деталей из ковкого чугуна. Такой чугун называется также передельным.

Серый чугун в изломе темно-серого цвета, мягок, хорошо обрабатывается инструментами и поэтому широко применяется в машиностроении. Температура плавления серого чугуна 1100— 1250° С. Чем больше в чугуне углерода, тем ниже температура плавления. Основное количество углерода в сером чугуне содержится в виде графита, равномерно распределенного среди зерен основного сплава.

В сером чугуне, по сравнению с белым, содержится больше кремния и меньше марганца, так как кремний способствует графитизации углерода в чугуне, а марганец, наоборот, вызывает образование связанного углерода — цементита.

Примерный состав серого чугуна: 3—3,6% углерода; 1,6—2,5% кремния; 0,5—1% марганца; 0,05—0,12% серы; 0,1—0,8% фосфора. Сера является вредной примесью в чугуне, затрудняет его сварку и понижает прочность; она повышает вязкость чугуна в расплавленном состоянии и увеличивает его литейную усадку.

Фосфор делает чугун более жидкоплавким и улучшает его свариваемость, но одновременно повышает хрупкость и твердость. Поэтому содержание серы и фосфора в чугуне не должно превышать указанных пределов.

По ГОСТ 1412—54 марка серого чугуна обозначается буквами СЧ и двумя числами, из которых первое обозначает среднюю величину временного сопротивления в кгс/мм 2 , а второе — то же, при изгибе. Выпускается, например, серый чугун марок СЧ12-28, СЧ15-32, СЧ18-36 и т. д. Наиболее прочным является чугун марки СЧ38-60. Твердость по Бринеллю для серого чугуна СЧ12-28 составляет от 143 до 229, чугуна СЧ38-60 —от 207 до 262.

Ковкий чугун по механическим свойствам занимает промежуточное положение между чугуном и сталью, отличается от серого чугуна большей вязкостью и меньшей хрупкостью. Для получения деталей из ковкого чугуна их отливают из белого чугуна, а затем подвергают термообработке, например длительному отжигу или «томлению» в песке при 800—850° С. При этом выделяется свободный углерод в форме мелких округленных частиц, располагающихся в виде обособленных скоплений (хлопьев) между кристаллами железа. При температуре выше 900—950° С углерод переходит в цементит и деталь теряет свойства ковкого чугуна. Поэтому детали после сварки приходится вновь подвергать полному циклу термообработки для получения в шве и околошовной зоне структуры ковкого чугуна.

Ковкий чугун по ГОСТ 1215—59 обозначается буквами КЧ и двумя числами: первое указывает временное сопротивление в кгс/мм 2 , а второе — относительное удлинение в процентах, например КЧ35-4.

Легированный чугун обладает особыми свойствами — кислотоупорностью, высокой прочностью при ударных нагрузках и др. Эти свойства чугун получает в результате легирования хромом, никелем.

Модифицированный чугун получают из серого чугуна, вводя в жидкий чугун специальные добавки, называемые модификаторами — силикокальций, ферросилиций, силикоалюминий и др. Количество вводимых модификаторов не превышает 0,1 — 0,5%, при этом температура жидкого чугуна должна быть не ниже 1400° С.

При модификации состав чугуна почти не изменяется, но зерна графита принимают мелкопластинчатый, слегка завихренный вид, и располагаются изолированно друг от друга. От этого структура чугуна становится однородной, плотной, повышаются его прочность, износо- и коррозиоустойчивость.

По ГОСТ 1412—54 модифицированный чугун обозначается так же, как и серый, но с добавлением буквы М, например: МСЧ2848.

Высокопрочный и сверхпрочный чугуны имеют, графит шаровой формы. Это достигается введением в жидкий чугун при 1400° С чистого магния или его сплавов с медью и ферросилицием, с последующей модификацией силикокальцием или ферросилицием. Сверхпрочный чугун имеет временное сопротивление при растяжении 50—65 кгс/мм 2 (при изгибе 80—120 кгс/мм 2 ) и относительное удлинение 1,5—3%.

Механические и технологические свойства: чугун является своеобразным композитным материалом, механические и эксплуатационные свойства которого зависят от характеристик металлической основы (прочность, пластичность, твердость и др.), а также формы, размеров, количества и распределения графитовых включений. При этом решающее значение в ряде случаев имеет либо графит, либо металлическая основа. Например, модуль упругости чугуна в решающей степени зависит от формы и величины графитовых включений, а твердость в основном определяется свойствами металлической основы. Такие свойства, как временное сопротивление разрыву, ударная вязкость, длительная прочность, зависят как от свойств металлической основы, так и от формы или размеров и количества графитовых включений.

Получение той или иной структуры чугуна в отливках зависит от многих факторов: химического состава чугуна, вида шихтовых материалов, технологии плавки и внепечной обработки металла, скорости кристаллизации и охлаждения расплава в форме, а следовательно, толщины стенки отливки, теплофизических свойств материала формы и др. Структуру металлической основы чугуна можно изменять также термической обработкой отливок, общие закономерности влияния которой аналогичны возникающим при термической обработке углеродистой стали, а особенности связаны с сопутствующими изменениями металлической основы процессами графитизации.

Среди элементов химического состава С и Si определяют формирование структуры чугуна, а при заданной технологии литья приведенный размер стенки отливки Rnp характеризует скорость ее охлаждения — отношение площади сечения стенки к периметру).

Наряду с Si большое значение как графитизирующий элемент имеет Аl, который иногда частично или полностью заменяет Si. Это улучшает свойства чугуна, особенно пластичность. Наиболее благоприятное сочетание характеристик прочности, вязкости и пластичности достигается в алюминиевых чугунах при содержании в них Si ε — относительная осадка при появлении первой трещины, % σ0,05 — предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа σ0,2 — предел текучести условный, МПа σизг — предел прочности при изгибе, МПа δ5,δ4,δ10 — относительное удлинение после разрыва, % σ-1 — предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа σсж0,05 и σсж — предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа ν — относительный сдвиг, % n — количество циклов нагружения s в — предел кратковременной прочности, МПа R и ρ — удельное электросопротивление, Ом·м ψ — относительное сужение, % E — модуль упругости нормальный, ГПа KCU и KCV — ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T — температура, при которой получены свойства, Град s T — предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ — коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) HB — твердость по Бринеллю C — удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)] HV — твердость по Виккерсу pn и r — плотность кг/м 3 HRCэ — твердость по Роквеллу, шкала С а — коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С HRB — твердость по Роквеллу, шкала В σ t Т — предел длительной прочности, МПа HSD — твердость по Шору G — модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Источник

Читайте также:  Чугунов дмитрий александрович инстаграм