Покрытие сплавом медь олово

Электролитическое осаждение сплава медь — олово

Совместное выделение на катоде меди и олова в любых соотношениях возможно из щелочноцианистых электролитов. Однако практическое применение в гальванотехнике чаще находят меднооловянные покрытия, содержащие 10—12 и 40—45% Sn.

Покрытия с относительно малым содержанием олова успешно применяют при частичной азотизации стали.

По некоторым данным, подобные покрытия более эффективны с точки зрения предотвращения диффузии азота в сталь, чем медные и оловянные покрытия такой же толщины. В качестве самостоятельных покрытий медно-оловянные сплавы могут выполнять функции твердых припоев.

Внешний вид бронзовых покрытий зависит от их состава: при 3% Sn они не отличаются от медных, при 12—15% Sn имеют золотисто-желтый цвет, а при 22,5% Sn становятся белыми.

Матовые бронзовые покрытия могут быть легко отполированы до блеска, а в присутствии блескообразователей получаются блестящими непосредственно из ванн и после нанесения бесцветного лака могут служить для декоративных целей.

В практике бронзовые покрытия используют иногда для замены меди и в особенности никеля при защитно-декоративном хромировании. Интерес к ним в этой области возрос в последние годы в связи с увеличением потребления никеля и его сплавов для разнообразных целей и стремлением заменить никель другими металлами.

В 1953 г. выполнено детальное исследование по замене или экономии никеля при защитно-декоративном хромировании и сделан вывод, что наиболее подходящей заменой является меднооловянистая бронза. К такому же выводу пришли Британская исследовательская ассоциация нежелезных металлов и другая британская группа.

Меднооловянные покрытия с содержанием олова 10—12% сохраняют пластичность в слоях большой толщины (1 мм и больше) при хорошем сцеплении с основным металлом. Электролиты устойчивы в эксплуатации, легко контролируются и корректируются.

Комбинация бронза — никель — хром превосходит наиболее широко распространенную для защитно-декоративных целей комбинацию медь — никель — хром. С экономической точки зрения вполне целесообразна замена 10—15 мкм никеля на 2,5 мкм олова (при толщине бронзы 25 мкм и содержании в ней 10% Sn), не говоря уже о том, что применение легкополируемой бронзы экономит много рабочей силы, полировочных материалов и электроэнергии.

Оптимальный состав так называемой белой бронзы соответствует 45% Sn и 55% Cu. В полированном виде такое покрытие напоминает серебряное; оно хорошо ведет себя в закрытых помещениях и успешно применяется для отделки столовых приборов, ванной арматуры, пепельниц и тому подобных изделий. В наружной атмосфере белая бронза плохо сопротивляется коррозии — тускнеет под действием промышленных газов.

Стандартные потенциалы меди и олова различаются почти на 0,5 В. Для совместного выделения на катоде необходимо сблизить значения их равновесных и катодных потенциалов. Это достигается подбором таких комплексообразователей, в которых активность ионов меди (более благородного металла) уменьшается в большей степени, чем активность ионов олова.

Наиболее эффективным комплексообразователем для меди является цианид, который может сдвинуть потенциал меди в сторону электроотрицательных значений больше чем на 1 В. Олово с цианидом не образует комплексных ионов; широко известны щелочные комплексы олова — станнаты и станниты. Выделение на катоде меди из цианистых электролитов и олова из щелочных электролитов сопровождается большой катодной поляризацией, в результате которой катодные потенциалы этих металлов настолько сближаются, что совместное электроосаждение их возможно в широких интервалах плотностей тока, начиная с самой незначительной.

Щелочноцианистые электролиты имеют наиболее широкое применение для совместного осаждения на катоде меди и олова в любых соотношениях. Основными компонентами таких электролитов являются: медноцианистая соль натрия или калия, станнат натрия или калия, свободный цианид, свободный (избыточный) едкий натр или едкое кали; в качестве дополнительного комплексообразователя и в то же время буферирующего агента иногда вводят сегнетову соль.

Станнатноцианистые электролиты получили большое распространение благодаря их преимуществам. Они отличаются хорошей устойчивостью и при плотности тока 4,5 А/дм 2 из них за час осаждается слой толщиной 63,5 мкм, т. е. примерно 1 мкм в минуту. Из этих электролитов можно осаждать слои толщиной 1,0 мм и больше с хорошими механическими показателями. При одинаковой толщине пористость бронзовых покрытий значительно меньше, чем никелевых, и при толщине 7,6 мкм бронзовые покрытия практически не имеют пор, в связи с чем они хорошо защищают сталь от коррозии.

Состав сплава в сильной степени зависит от относительных концентраций солей осаждающихся металлов. Для повышения содержания олова в катодном осадке необходимо повысить концентрацию оловянной соли в электролите, однако повышение содержания олова в катодном осадке сильно отстает от повышения относительной концентрации оловянной соли в электролите. Так, при отношении Cu : Sn в электролите, равном 6,4 :1, отношение Cu: Sn в электроосажденном сплаве равно 24:1, а при отношении Cu : Sn в электролите, равном 1 : 1,4, отношение Cu: Sn в сплаве равно 2,3 : 1, т. е. медь выделяется предпочтительно перед оловом.

Читайте также:  Как определить олово или сплав

Ниже будет показано, что состав сплава зависит также от содержания свободного цианида и щелочи в электролите, от температуры и плотности тока, а также от суммарной концентрации металлов. Приведенные выше соотношения характерны для электролита с суммарной концентрацией Cu+Sn, равной 40 г/л при содержании 15,4 г/л NaCN и 7,5 г/л NaOHсвоб плотности тока 3 А/дм 2 и температуре 65° С (рис. 92).


Рис. 92. Зависимость состава катодного осадка от концентрации меди и олова в электролите

Рис. 93. Влияние концентрации свободного цианида на состав катодного осадка (в электролите 12 г/л Cu, 36 г/л Sn, 7,5 г/л NaOHсвоб), температура 65° С, плотность тока 2 А/дм 2

С увеличением концентрации свободного цианида в электролите потенциал выделения меди смещается в сторону электроотрицательных значений, так как повышается прочность медного комплексного иона. На потенциал выделения олова концентрация свободного цианида в электролите практически не оказывает влияния, поэтому увеличение концентрации свободного цианида в электролите приводит к уменьшению содержания меди в катодном осадке и к повышению содержания олова в нем. Так, в электролите, содержащем 12 г/л Cu, 36 г/л Sn, 7,5 г/л NaOH, при температуре 65° С, плотности тока 2 А/дм 2 в присутствии 7,5 г/л NaCN катодный осадок содержит 61% Cu и 39% Sn, а при содержании 23 г/л NaCN катодный осадок состоит из 40,5% Cu и 55,5% Sn (рис. 93).

С увеличением содержания свободной щелочи в электролите потенциал разряда ионов олова смещается в сторону электроотрицательных значений, между тем как на потенциал разряда ионов меди концентрация свободной щелочи в электролите практически не влияет. Поэтому с увеличением содержания щелочи в электролите уменьшается процентное содержание олова в катодном осадке и соответственно повышается содержание меди в нем.

Состав меднооловянного сплава, помимо концентрации основных компонентов, зависит также от температуры и плотности тока. Качественные покрытия, так же как и при лужении в щелочных электролитах, получаются только при повышенной температуре — порядка 65—70°С. Однако температура оказывает влияние не только на качество бронзовых покрытий, но и на их состав. С повышением температуры понижается катодная поляризация как при выделении меди, так и при выделении олова. Но при одинаковом повышении температуры потенциал выделения олова облагораживается в большей степени, чем потенциал выделения меди. Поэтому повышение температуры приводит к увеличению содержания олова в катодном осадке. При повышении температуры от 30 до 70° С содержание меди в катодном осадке уменьшается с 71,1 до 47,5%, а содержание олова соответственно увеличивается с 28,9 до 52,5% (рис.94).

Повышение плотности тока меньше влияет на состав катодного осадка, чем температура, причем содержание олова в катодном осадке с повышением плотности тока понижается.


Рис. 94. Влияние температуры на состав катодного осадка (в электролите состава, г/л: 15 Cu, 45 Sn, 15 NaCNсвоб, 7,5 NaOHсвоб; плотность тока 2 А/дм 2

Щелочноцианистые меднооловянные электролиты сочетают в себе все свойства, обусловливающие хорошую рассеивающую способность: большую катодную поляризацию, хорошую электропроводность и уменьшение выхода по току по мере повышения плотности тока.

При электроосаждении бронзы с содержанием олова до 10—12% молено применять растворимые аноды. Анодную плотность тока поддерживают около 3 А/дм 2 . Корректирование электролита осуществляется по данным периодических анализов на основные компоненты. Двухвалентные ионы олова обнаруживаются по структуре покрытий. Даже при незначительном появлении губчатых осадков в электролит следует добавить окислитель (перекись водорода) или некоторое время проработать ванну медным и нерастворимым (графитовым) анодами.

Электроосаждение высокооловянистых сплавов типа белой бронзы осуществляется с раздельными медными и оловянными анодами. На оловянных анодах предварительно создают золотистую пленку путем анодной обработки и в дальнейшем поддерживают ее так, как это делается в щелочных оловянных электролитах. Плотность тока на медных и оловянных анодах регулируют таким образом, чтобы в электролите поддерживать заданное отношение между ионами этих металлов. Схема включения раздельных анодов приведена на рис. 95.


Рис. 95. Схема включения раздельных анодов:
А — амперметр; R — реостат; Cu — медный анод; Sn — оловянный анод; С — угольный анод; К — катод; Р — дополнительный контрольный катод

Состав и режим электролита отличаются в зависимости от заданного состава покрытия и его толщины. Для нанесения относительно тонких слоев бронзы с содержанием 10—12% Sn применяют электролит состава: 26—28 г/л Cu (в виде цианистой соли), 13—14 г/л Sn (в виде станната), 13—15 г/л NaCN, 8—10 г/л NaOH; температура электролита 65—70°С, плотность тока

Читайте также:  Порошок бледно желтоватого цвета получаемый при накаливании олова 5 букв

3 А/дм 2 . Для нанесения толстых слоев бронзы (до 1 мм) применяют электролит состава: 25—30 г/л Cu (в виде цианистой соли), 12—15 г/л Sn (в виде станната), 12—15 г/л NaCN, 11 — 13 г/л NaOHсвоб; температура электролита 65—70° С; катодная плотность тока около 2 А/дм 2 . Аноды бронзовые примерного состава: 90% Cu, 10% Sn. Анодная плотность тока 1 —1,5 А/дм 2 . Можно также применять медные аноды с периодическим добавлением в электролит станната.

В качестве самостоятельного защитно-декоративного покрытия получила распространение так называемая белая бронза, в составе которой примерно 45% Sn и 55% Cu. По литературным данным, это покрытие особенно широко применяется в Англии; в СССР и других странах это покрытие также находит разнообразное применение. По своему внешнему виду покрытия из белой бронзы занимают промежуточное положение между никелем и серебром, больше приближаясь к последнему. По твердости они превосходят никелевые, но уступают хромовым. В отличие от серебра белая бронза не тускнеет под действием сероводорода и других сернистых соединений, покрытия хорошо паяются и после полировки имеют приятный внешний вид. Белой бронзой можно покрывать изделия из меди и ее сплавов, а также стальные изделия. По меди и латуни рекомендуется слой толщиной 12,5 мкм, по стали — толщиной 25 мкм. Белой бронзой покрывают детали радиоаппаратуры, столовые приборы, различные металлические изделия, применяемые в быту и т. д.

Для покрытия белой бронзой рекомендуется электролит следующего состава (в г/л) и режим:
Олово (в виде станната) 38—42
Медь (цианистая) . . . 7,5—8,5
NaCNсвоб. 16-18
NaOHсвоб. 14—16
Температура, °С. . . . 65 ±2
Плотность тока, А/дм 2 . 1,5—2,5
За 20 мин осаждается слой в 25 мкм, что соответствует выходу по току около 60%- Аноды раздельные — медные и оловянные. Оловянные аноды предварительно пассивируют с созданием на их поверхности желто-золотистой пленки. На долю оловянных анодов приходится 3U всего тока при плотности тока 1,5—2 А/дм 2 ; на медные аноды приходится У4 тока при плотности тока 0,5—1 А/дм 2 . Можно также периодически пропускать ток через медные и оловянные аноды или применять нерастворимые аноды в комбинации с медными или оловянными и восполнять металл, выделяющийся на изделиях, систематически вводя в электролит соответствующие соли.

Источник

Нанесение оловянных покрытий.

Олово – мягкий металл серебристо-белого цвета. В атмосферных условиях даже в присутствии влаги олово окисляется медленно. Разбавленные растворы минеральных солей при комнатной температуре практически не растворяют олова.

В концентрированных растворах соляной и серной кислот олово при нагревании легко растворяется. В щелочах олово неустойчиво и при кипячении растворяется с образованием станнатов. С органическими кислотами олово образует комплексные соединения, при этом потенциал олова становится отрицательнее железа, т.е. олово становится анодным покрытием. Это обстоятельство, а также безвредность олова позволяют широко его использовать в пищевой промышленности для защиты внутренней поверхности консервной тары от коррозии.

Оловянное покрытие на поверхности консервной тары.

Оловянные покрытия наносят на детали из стали, меди, алюминия, цинка. Их защитные свойства на стальных деталях в атмосферных условиях надежны только при отсутствии пор.

Оловянное покрытие для защиты от коррозии.

Оловянные покрытия можно нанести:

    • горячим способом;
    • методом контактного осаждения;
    • методом гальванического осаждения.

Горячий способ прост в исполнении, но не позволяет получать равномерного по толщине покрытия.

Контактный способ применяется для деталей, изготовленных из металлов или сплавов менее электроотрицательных, чем олово, то есть из меди, латуни, бронзы.

Рекомендуется раствор состава, г/л:

Олово двухлористое 10 – 20

Тиомочевина 80 – 90

Натрий хлористый 75 – 90

Кислота соляная (1,19 см 3 /л) 15 – 17

Режим работы: температура 55 – 65°С, время осаждения 25 – 30 минут.

Толщина получаемого покрытия около 1 мкм. При этом не требуется контролировать время нанесения покрытия. Скорость осаждения снижается по мере перекрытия медной основы, пока процесс не прекратиться полностью. Толщина осадка определяется составом раствора и режимом процесса и должна быть практически одинаковой на всех участках, контактирующих с раствором.

Недостатком контактного метода нанесения оловянного покрытия является малая толщина осадка.

Только электрохимический способ позволяет получать покрытия заданной толщины практически на любом материале (на некоторых с предварительным подслоем).

Сернокислое олово 40 – 50

Читайте также:  Серое олово это сложное или простое вещество

Серная кислота 50 – 80

Сернокислый натрий 30 – 50

Препарат ОС-20 2 – 5

Температура 15 – 20°С, плотность тока 1 – 2 А/дм 2 .

Для оловянных покрытий, полученных электрохимическим способом характерен самопроизвольный рост нитевидных кристаллов олова (см.«Осаждение сплавов олова»), длина которых достигает5 мм, что приводит к коротким замыканиям при эксплуатации электротехнической аппаратуры.

Избежать образование нитевидных кристаллов можно различными методами:

  • нанесением перед оловянированием тонкого подслоя никеля (см. «Никелирование»);
  • оплавлением оловянных покрытий;
  • применением оловянных сплавов (см. «Осаждение сплава олово-висмут»).

Нанесение олова контактным способом также исключает иглообразование, хотя при этом способе покрытие получается толщиной не более 1 мкм.

Этот процесс наиболее часто применяется в технологии изготовления печатных плат.

Похожие публикации:

7 комментариев: Нанесение оловянных покрытий.

Здравствуйте Галина Владимировна!
Какие преимущества и недостатки гальванического нанесения олова на медную поверхность над горячим нанесением?

В интернете я нашел следующее:
Преимущества гальванического нанесения олова:
1. Можно наносить в 10-ки раз меньший слой олова, что приводит к значительной экономии дорогого металла.
2. Гальваническое покрытие не образует пор — т.е. оно сплошное и если соединить с преимуществом №1 это подтверждает целесообразность данной экономии.
3. Незначительное отклонение толщины покрытия по всей линейной поверхности.

Преимущества горячего нанесения:
1. Простота технологии и оборудования.

2. Мое мнение (теоретическое) — прав ли я?
Покрытие нанесенное горячим способом является более стойким к механическим воздействиям, не отслаивается от подложки благодаря большому диффузионному (адгезионному) слою.

Если я не прав, тогда в чем преимущество горячего наложении олова над гальваническим? Горячее наложение лужение используется на многих предприятиях, однако простота технологии не может конкурировать с экономичностью в условиях рынка…

С уважением, Александр А.

Хотелось бы узнать ваше мнение.
Какова возможная стойкость олова к полиморфным превращениям на медной жиле при длительном хранении в условиях крайнего севера? Медь предотвращает полиморфизм олова, но как она может подействовать на оловянное покрытие…?

С уважением, Александр А.

Здравствуйте, Александр!
Области применения горячего способа нанесения олова и гальванического разные: на медную проволоку или листы гораздо проще и экономичнее нанести олово горячим способом, а детали сложной конфигурации необходимо покрывать гальванически, чтобы получить одинаковую толщину по всей поверхности.
Относительно полиморфизма установлено, что наибольшая скорость превращения белого олова в серый порошок при температуре минус 48С. При температуре минус 30С олово может находиться без изменения много лет.
К сожалению, данные наблюдений фазового перехода олова противоречивы, и поэтому до сих пор конструктора и технологи не имеют конкретных данных при проектировании, изготовлении и эксплуатации РЭА.
С уважением, Королева Галина Владимировна.

Здравствуйте, Галина Владимировна! Скажите, пожалуйста, по каким причинам может не растворятся сернокислое олово в дистиллированной воде? У меня на участке уже давно работает ванна оловенирования, электролит разводим периодически и раньше с такими проблемами не сталкивались. Пробовал растворить в теплой воде, в концентрированной серной кислоте, в разбавленной серной кислоте, но положительного результата не добился. Поставщик уверяет, что «Сернокислое олово свежее (август 2013)».

Здравствуйте, Игорь!
Олово сернокислое имеет очень маленькую растворимость, поэтому при приготовлении электролита олово-висмут в ванну сначала вливают расчетное количество серной кислоты, затем маленькими порциями при постоянном помешивании добавляют сернокислое олово. Нужно иметь терпение и делать все очень тщательно, тогда все получится.
С уважением, Королева Галина Владимировна.

Здравствуйте Галина Владимировна! Подскажите пожалуйста, какие лучше использовать аноды для ванны щелочного лужения?
У нас на предприятии используется ванна щелочного лужения на основе четыреххлористого олова и щелочи, используем никелевые аноды, но с ними возникают некоторые трудности (они расстворяются и ванна начинает шламить, и их тяжело чистить). В литературе читала, что лучше применять нерастворимые стальные аноды из нержавейки.

С уважением, Надежда.

Здравствуйте, Надежда!
При использовании щелочного электролита лужения состава:
Натрия станнат — 50-100 г/л
Натр едкий — 10-15 г/л
Натрий уксуснокислый — 15-25 г/л
Температура = 60-80°С
Плотность тока = 0,5-2 А/дм2
Применяют оловянные аноды, но предварительно их пассивируют при повышенном значении анодной плотности тока (в 2-3 раза больше рабочей) в течение 5 -10 мин. При этом на них образуется пленка желтовато-золотистого цвета. Обработанные таким образом аноды растворяются с образованием только четырехвалентных ионов олова. После формирования пленки анодная плотность тока может быть снижена. При нахождении анодов в электролите без тока пассивная пленка растворяется, поэтому при перерывах в работе аноды необходимо выгружать и помещать в ванну с водой. Загрузку и выгрузку анодов надо производить под током.
С уважением, Королева Галина Владимировна.

Источник