Порядок уменьшения электроотрицательности олово германий кремний

Таблица электроотрицательности химических элементов

Средняя оценка: 4.6

Всего получено оценок: 326.

Средняя оценка: 4.6

Всего получено оценок: 326.

Выяснить активность простых веществ можно с помощью таблицы электроотрицательности химических элементов. Обозначается как χ. Подробнее о понятии активности читайте в нашей статье.

Что такое электроотрицательность

Свойство атома химического элемента притягивать к себе электроны других атомов называется электроотрицательностью. Впервые понятие ввёл Лайнус Полинг в первой половине ХХ века.

Все активные простые вещества можно разделить на две группы в соответствии с физическими и химическими свойствами:

Все металлы являются восстановителями. В реакциях они отдают электроны и обладают положительной степенью окисления. Неметаллы могут проявлять свойства восстановителей и окислителей в зависимости от значения электроотрицательности. Чем выше электроотрицательность, тем сильнее свойства окислителя.

Полинг составил шкалу электроотрицательности. В соответствии со шкалой Полинга наибольшей электроотрицательностью обладает фтор (4), наименьшей – франций (0,7). Это значит, что фтор является самым сильным окислителем и способен притягивать электроны большинства элементов. Напротив, франций, как и другие металлы, является восстановителем. Он стремится отдать, а не принять электроны.

Электроотрицательность является одним из главных факторов, определяющих тип и свойства образованной между атомами химической связи.

Как определить

Свойства элементов притягивать или отдавать электроны можно определить по ряду электроотрицательности химических элементов. В соответствии со шкалой элементы со значением более двух являются окислителями и проявляют свойства типичного неметалла.

Номер элемента

Элемент

Символ

Электроотрицательность

Вещества с электроотрицательностью два и меньше являются восстановителями и проявляют металлические свойства. Переходные металлы, обладающие переменной степенью окисления и относящиеся к побочным подгруппам таблицы Менделеева, имеют значения электроотрицательности в пределах 1,5-2. Ярко выраженными свойствами восстановителя обладают элементы с электроотрицательностью равной или меньше одного. Это типичные металлы.

В ряде электроотрицательности металлические и восстановительные свойства увеличиваются справа налево, а окислительные и неметаллические свойства – слева направо.

Рис. 2. Ряд электроотрицательности.

Помимо шкалы Полинга узнать, насколько выражены окислительные или восстановительные свойства элемента можно с помощью периодической таблицы Менделеева. Электроотрицательность увеличивается в периодах слева направо с увеличением порядкового номера. В группах значение электроотрицательности уменьшается сверху вниз.

Что мы узнали?

Электроотрицательность показывает способность элементов отдавать или принимать электроны. Эта характеристика помогает понять, насколько выражены свойства окислителя (неметалла) или восстановителя (металла) у конкретного элемента. Для удобства Полингом была разработана шкала электроотрицательности. Согласно шкале максимальными окислительными свойствами обладает фтор, минимальными – франций. В периодической таблице свойства металлов увеличиваются справа налево и сверху вниз.

Источник

Электроотрицательность элементов по таблице Менделеева

Электроотрицательность — это характеристика атома, показывающая, насколько высока его способность притягивать к себе электроны. Когда химическая связь образована двумя разными элементами, электроны у одного из них всегда расположены более плотно, чем у другого. Тот атом, у которого электронная плотность выше, называется электроотрицательным, тот, у кого ниже — соответственно, электроположительным.

Как определить электроотрицательность

Существует несколько шкал, ориентируясь на которые, можно определить электроотрицательность того или иного элемента. Попробуем их перечислить:

  1. Таблица Менделеева.
  2. Шкала Малликена.
  3. Шкала Полинга.
  4. Шкала Олреда-Рохова.

Чтобы определить параметр «электроотрицательность» по таблице Менделеева, нужно всего лишь знать, что наиболее электроотрицательные свойства имеют те элементы, которые располагаются вверху таблицы и в правой ее части. То есть, чем выше и правее элемент находится в таблице Менделеева, тем выше у него электроотрицательность и наоборот, чем ниже и левее — тем выше у него электроположительность.

Шкала Полинга — наиболее часто используемая таблица электроотрицательности. Названа она в честь американского химика Лайнуса Полинга, который впервые ввел понятие электроотрицательности. Согласно шкале Поллинга, электроотрицательность всех имеющихся в природе элементов лежит в интервале от 0,7 (таковой она является у щелочного металла франция) до 4,0 (у газа-галогена фтора). В таблице приводятся относительные и неточные величины.

Читайте также:  Теплоемкость олова при нагревании

Шкала Малликена рассматривает электроотрицательность как величину энергии связи между валентными электронами. Приводятся максимально точные расчеты.

Расположение элементов в каждой из таблиц является идентичным, несмотря на то, что методы определения отличаются друг от друга, и величины тоже.

Самые высокие значения электроотрицательности

Фтор, один из галогенов — это элемент, обладающий наивысшей электроотрицательностью, а точнее — 3,98. Его химическая активность невероятно высока, настолько, что химики называют его не иначе как «все разгрызающий».

Следом за фтором идет кислород. Электроотрицательность кислорода немного пониже — 3,44, но тоже достаточно высока.

Следом за ними (спускаясь все ниже по правой части таблицы Менделеева) идут:

Большая часть неметаллов имеет электроотрицательность, колеблющуюся между значениями 2 и 3. У отличающихся наиболее высокой активностью металлов, от франция до бериллия, она колеблется от значения 0,7 до 1,57.

Как определить валентные электроны

Валентностью называют способность атома вступать во взаимодействие с другими атомами, образуя с ними определенные химические связи. Валентными электронами именуются электроны, непосредственно участвующие в образовании химической связи. Основными создателями, внесшими в теорию валентности наибольший вклад, являются русский ученый Бутлеров и немецкий ученый Кекуле. Электроны, которые принимают участие в образовании химической связи, называют валентными.

Атом, как мы все знаем из школьного курса, устроен таким образом, что довольно-таки напоминает по своему устройству Солнечную систему. В центре атома находится огромное ядро, чья масса чуть менее, чем полностью равняется массе всего атома, а вокруг него по орбиталям вращаются мелкие электроны, неодинаковые по своим внутренним характеристикам. Ядро атома окажется не таким уж и большим, если сравнить его размеры с длиной расстояния до орбиталей, по которым вращаются атомы. Чем дальше от ядра и чем ближе к внешней электронной оболочке находится электрон конкретно взятого атома, тем быстрее он вступает во взаимодействие с электронами других атомов.

Итак, перед нами таблица Менделеева. Найти на ней нужно третий период. Последовательно перебираем элементы главных подгрупп в нем. Существует правило, согласно которому валентность элемента определяется по номеру его группы и равняется количеству электронов на внешней оболочке его атома.

  • У щелочного металла натрия на внешней оболочке всего только один электрон, принимающий участие в химической связи между элементами. Исходя из этого, мы определяем, что он одновалентен.
  • У щелочноземельного металла на внешней оболочке уже два электрона. Это означает, что его валентность равна двум.
  • У амфотерного металла алюминия ровно три электрона на внешней оболочке. Его валентность так же, как и у предыдущих элементов, соответствует этому числу.
  • У кремния четыре электрона, он четырехвалентен.
  • Фосфор может образовывать различные связи и иметь разные валентности, но высшая валентность фосфора равна пяти.
  • Сера точно так же, как и фосфор, может иметь разные валентности, но высшая равняется шести.
  • Возьмем хлор. Когда, к примеру, он состоит в молекуле соляной кислоты (HCl), он находится в одновалентном состоянии. А вот в молекуле хлорной кислоты (HClO4) он сразу же становится семивалентным.

Помимо главных, есть еще и побочные подгруппы. Когда дело касается их, учитываются еще и d-электроны на предыдущем подуровне. В таблице Менделеева все эти значения легко можно отыскать. Попробуем определить высшую валентность хрома. На внешнем уровне у хрома находится 1 электрон, на d-подуровне — 5. Следовательно, его высшая валентность равна 6. У марганца на внешнем уровне 2 электрона, на d-подуровне — 5. Значит, его высшая валентность — 7.

Все вышеописанное, за некоторыми исключениями, действительно для элементов всех других побочных подгрупп (помимо тех, в которые включены марганец и хром). Вот исключения:

Видео

Это видео поможет вам лучше усвоить такое понятие, как электроотрицательность.

Источник

Порядок уменьшения электроотрицательности олово германий кремний

Определите, какие из указанных элементов имеют на внешнем уровне одинаковое число s-электронов и p-электронов (в основном состоянии)? Запишите номера выбранных элементов.

Для выполнения заданий 1–3 используйте следующий ряд химических элементов:

Ответом в заданиях 1–3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

Из указанных в ряду химических элементов выберите три p-элемента. Расположите выбранные элементы в порядке уменьшения их электроотрицательности. Запишите номера выбранных элементов в нужной последовательности.

Из предложенного перечня p-элементами являются германий, углерод и хлор. Электроотрицательность в главной группе падает при движении сверху вниз; а также уменьшается при движении по периоду справа налево. Поэтому последовательность элементов в порядке уменьшения их электроотрицательности следующая: хлор — углерод — германий.

Читайте также:  Чем можно заменить олова при пайке

Из числа указанных в ряду элементов выберите два элемента, которые в соединениях могут проявлять степень окисления +5. Запишите в поле ответа номера выбранных элементов в порядке возрастания.

В указанном ряду элементов степень окисления +5 могут иметь хлор и ванадий.

1. — один s-электрон;

2. — два s-электрона и два p-электрона;

3. два s-электрона и два p-электрона;

4. — два s-электрона и пять p-электронов;

5. — два s-электрона.

Источник

Электроотрицательность химических элементов

Средняя оценка: 4.7

Всего получено оценок: 340.

Средняя оценка: 4.7

Всего получено оценок: 340.

При взаимодействии элементов образуются электронные пары за счёт принятия или отдачи электронов. Способность атома оттягивать электроны была названа Лайнусом Полингом электроотрицательностью химических элементов. Полинг составил шкалу электроотрицательности элементов от 0,7 до 4.

Что такое электроотрицательность?

Электроотрицательность (ЭО) – количественная характеристика элемента, показывающая, с какой силой притягиваются электроны ядром атома. ЭО также характеризует способность удерживать валентные электроны на внешнем энергетическом уровне.

Рис. 1. Строение атома.

Возможность отдавать или принимать электроны определяет принадлежность элементов к металлам или неметаллам. Ярко выраженными металлическими свойствами обладают элементы, легко отдающие электроны. Элементы, принимающие электроны проявляют неметаллические свойства.

Электроотрицательность проявляется в химических соединениях и показывает смещение электронов в сторону одного из элементов.

Электроотрицательность увеличивается слева направо и уменьшается сверху вниз в периодической таблице Менделеева.

Как определить

Определить значение можно с помощью таблицы электроотрицательности химических элементов или шкалы Полинга. За единицу принята электроотрицательность лития.

Наибольшей ЭО обладают окислители и галогены. Значение их электроотрицательности больше двух. Рекордсменом является фтор с электроотрицательностью 4.

Рис. 2. Таблица электроотрицательности.

Наименьшую ЭО (меньше двух) имеют металлы первой группы периодической таблицы. Активными металлами считаются натрий, литий, калий, т.к. им легче расстаться с единственным валентным электроном, чем принять недостающие электроны.

Некоторые элементы занимают промежуточное положение. Их электроотрицательность близка к двум. Такие элементы (Si, B, As, Ge, Te) проявляют металлические и неметаллические свойства.

Для удобства сравнения ЭО используется ряд электроотрицательности элементов. Слева располагаются металлы, справа – неметаллы. Чем ближе к краям, тем активнее элемент. Самый сильным восстановителем, легко отдающим электроны и имеющим наименьшую электроотрицательность, является цезий. Активным окислителем, способным притягивать электроны, является фтор.

Рис. 3. Ряд электроотрицательности.

В неметаллических соединениях притягивают электроны элементы с большей ЭО. Кислород с электроотрицательностью 3,5 притягивает атомы углерода и серы с электроотрицательностью 2,5.

Что мы узнали?

Электроотрицательность показывает степень удержания ядром атома валентных электронов. В зависимости от значения ЭО элементы способны отдавать или принимать электроны. Элементы с большей электроотрицательностью оттягивают электроны и проявляют неметаллические свойства. Элементы, атомы которых легко отдают электроны, обладают металлическими свойствами. Некоторые элементы имеют условно нейтральную ЭО (около двух) и могут проявлять металлические и неметаллические свойства. Степень ЭО увеличивается слева направо и снизу вверх в таблице Менделеева.

Источник

Электроотрицательность, степень окисления и валентность химических элементов

Теория к заданию 3 из ЕГЭ по химии

Электроотрицательность, степень окисления и валентность химических элементов

Электроотрицательность

В химии широко применяется понятие электроотрицательности (ЭО).

Свойство атомов данного элемента оттягивать на себя электроны от атомов других элементов в соединениях называют электроотрицательностью.

Электроотрицательность лития условно принимается за единицу, ЭО других элементов вычисляют соответственно. Существует шкала значений ЭО элементов.

Числовые значения ЭО элементов имеют приблизительные значения: это безразмерная величина. Чем выше ЭО элемента, тем ярче проявляются его неметаллические свойства. По ЭО элементы можно записать следующим образом:

$F > O > Cl > Br > S > P > C > H > Si > Al > Mg > Ca > Na > K > Cs$. Наибольшее значение ЭО имеет фтор.

Сопоставляя значения ЭО элементов от франция $(0,86)$ до фтора $(4,1)$, легко заметить, что ЭО подчиняется Периодическому закону.

В Периодической системе элементов ЭО в периоде растет с увеличением номера элемента (слева направо), а в главных подгруппах — уменьшается (сверху вниз).

В периодах по мере увеличения зарядов ядер атомов число электронов на внешнем слое увеличивается, радиус атомов уменьшается, поэтому легкость отдачи электронов уменьшается, ЭО возрастает, следовательно, усиливаются неметаллические свойства.

Читайте также:  Какая применяется кислота для пайки оловом

Степень окисления

Сложные вещества, состоящие из двух химических элементов, называют бинарными (от лат. би — два), или двухэлементными.

Вспомним типичные бинарные соединения, которые приводились в качестве примера для рассмотрения механизмов образования ионной и ковалентной полярной связи: $NaCl$ — хлорид натрия и $HCl$ — хлороводород. В первом случае связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом $+1$, а атом хлора принял электрон и превратился в ион с зарядом $–1$. Схематически процесс превращения атомов в ионы можно изобразить так:

В молекуле же $HCl$ связь образуется за счет спаривания неспаренных внешних электронов и образования общей электронной пары атомов водорода и хлора.

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного $s$-облака атома водорода одноэлектронным $р$-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора: $↖<δ+>→↖<δ−>$, т.е. электрон не полностью перейдет от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов $δ$: $H^<+0,18>Cl^<–0,18>$. Если же представить, что и в молекуле $HCl$, как и в хлориде $NaCl$, электрон полностью перешел от атома водорода к атому хлора, то они получили бы заряды $+1$ и $–1$: $↖<+1>↖<−1>. Такие условные заряды называют степенью окисления. При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных атомов.

Степень окисления — это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов.

Степень окисления может иметь отрицательное, положительное или нулевое значение, которое обычно ставится над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов или к которым смещены общие электронные пары, т.е. атомы более электроотрицательных элементов.

Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, т.е. атомы менее электроотрицательных элементов.

Нулевое значение степени окисления имеют атомы в молекулах простых веществ и атомы в свободном состоянии.

В соединениях суммарная степень окисления всегда равна нулю. Зная это и степень окисления одного из элементов, всегда можно найти степень окисления другого элемента по формуле бинарного соединения. Например, найдем степень окисления хлора: $Cl_2O_7$. Обозначим степень окисления кислорода: $↖<-2>$. Следовательно, семь атомов кислорода будут иметь общий отрицательный заряд $(–2)·7=–14$. Тогда общий заряд двух атомов хлора равен $+14$, а одного атома хлора $(+14):2=+7$.

Аналогично, зная степени окисления элементов, можно составить формулу соединения, например, карбида алюминия (соединения алюминия и углерода). Запишем знаки алюминия и углерода рядом — $AlC$, причем сначала — знак алюминия, т.к. это металл. Определим по таблице элементов Менделеева число внешних электронов: у $Al$ — $3$ электрона, у $С$ — $4$. Атом алюминия отдаст свои три внеш них электрона углероду и получит при этом степень окисления $+3$, равную заряду иона. Атом углерода, наоборот, примет недостающие до «заветной восьмерки» $4$ электрона и получит при этом степень окисления $–4$. Запишем эти значения в формулу $(↖<+3>↖<-4>)$ и найдем наименьшее общее кратное для них, оно равно $12$. Затем рассчитаем индексы:

Валентность

Очень важное значение в описании химического строения органических соединений имеет понятие валентности.

Валентность характеризует способность атомов химических элементов к образованию химических связей; она определяет число химических связей, которыми данный атом соединен с другими атомами в молекуле.

Валентность атома химического элемента определяется, в первую очередь, числом неспаренных электронов, принимающих участие в образовании химической связи.

Валентные возможности атомов определяются:

  • числом неспаренных электронов (одноэлектронных орбиталей);
  • наличием свободных орбиталей;
  • наличием неподеленных пар электронов.

В органической химии понятие «валентность» замещает понятие «степень окисления», с которым привычно работать в неорганической химии. Однако это не одно и то же. Валентность не имеет знака и не может быть нулевой, тогда как степень окисления обязательно характеризуется знаком и может иметь значение, равное нулю.

Источник

Adblock
detector