При обработке жаропрочных легированных сталей



Особенности обработки резанием нержавеющих и жаропрочных сталей и сплавов

Рабочие процессы в современных машинах характеризуются высокими значениями давлений, нагрузок, скоростей и температур. Обычные конструкционные стали в этих условиях недолговечны или вовсе непригодны, поэтому в машиностроении все большее распространение получают стали и сплавы с высокими показателями прочности, жаропрочности, жаростойкости, а также стойкости против коррозии.
Жаропрочные и нержавеющие стали и сплавы относятся к категории труднообрабатываемых материалов. Они значительно хуже поддаются обработке резанием по сравнению с обычными конструкционными сталями.
Низкая обрабатываемость этих материалов определяется их физико-механическими свойствами. В этих условиях весьма важно раскрыть причины, влияющие на их обрабатываемость, и найти способы и средства увеличения производительности их обработки на металлорежущих станках.
Жаропрочным называется материал, способный работать в напряженном состоянии при высоких температурах в течение определенного времени и обладающий при этом достаточной жаростойкостью, т. е. стойкостью против химического разрушения поверхности в газовых средах при высоких температурах. Другим важным свойством жаропрочных сталей и сплавов является их высокая коррозионная стойкость в агрессивных средах.
Нержавеющим называется материал, обладающий высоким сопротивлением коррозии в агрессивных средах, прежде всего в атмосфере воздуха, паров воды и кислот. Обычно к такого рода материалам предъявляют требования обеспечения коррозионной стойкости при рабочей температуре детали. Большинство жаропрочных сплавов, как правило обладает повышенной коррозионной стойкостью при высоких температурах в различных средах. Поэтому, несмотря на то, что понятия жаропрочного и нержавеющего

проката по определению отличаются друг от друга, они обладают целым рядом общих физико-механических свойств, обуславливающих их общие технологические свойства по обрабатываемости резанием.
Основная структура большинства жаропрочки и нержавейки представляет собой обычно твердый раствор аустенитного класса с гранецентрированной кубической решеткой. При этом большая часть деформируемых жаропрочных сплавов принадлежит к типу дисперсионно твердеющих, т. е. в этих сплавах происходит выделение из твердого раствора структурной составляющей – второй фазы, отличной от его основы и рассеянной по всему объему сплава в тонкодисперсной форме.
Высокая дисперсность структуры препятствует возникновению и развитию процессов скольжения, при этом сопротивление ползучести сплава повышается.

Сравнение значений механических характеристик жаропрочных сталей и сплавов и стали 45 показывает, что значения истинного предела прочности при растяжении Sк, предела прочности в и твердости НВ при обычной температуре и отсутствии деформации (упрочнения), примерно равны. Поэтому худшая обрабатываемость жаропрочных и нержавеющих сталей и сплавов определяется другими физико-механическими и химическими свойствами и, прежде всего, структурой, механическими характеристиками, определяющими их свойства не только в исходном, но и в упрочненном состоянии и при нагреве, а также теплофизическими показателями (температура плавления, энергия активации, теплопроводность), определяющими свойства материала при повышенных температурах.
Основные особенности резания жаропрочных и нержавеющих сталей и сплавов, затрудняющие их механическую обработку, следующие.
1. Высокое упрочнение материала в процессе деформации резанием. Повышенная упрочняемость жаропрочного и нержавеющего

проката объясняется специфическими особенностями строения кристаллической решетки этих материалов. Характеристикой, определяющей пластичность или способность материала к упрочнению, является отношение условного предела текучести, соответствующего 0.2-процентной остаточной деформации, к пределу прочности 0.2/в. Чем меньше это отношение, тем более пластичен материал и тем большей работы и сил резания требует он для снятия одного и того же объема металла. Величина этого отношения для жаропрочных сплавов составляет до 0.4…0.45, в то время как для обычных конструкционных сталей эта величина составляет 0.6…0.65 и более.
Вследствие повышенной способности к упрочнению при пластической деформации жаропрочных сплавов значения в могут возрасти в 2 раза (с 60 до 120 кгс/мм), т – в 3…4 раза (с 25-30 до 100 кгс/мм), при этом относительное удлинение уменьшается с 40-65 до 5-10%.
2. Малая теплопроводность обрабатываемого материала, приводящая к повышенной температуре в зоне контакта, а следовательно, к активации явлений адгезии и диффузии, интенсивному схватыванию контактных поверхностей и разрушению режущей части инструмента. Эти явления не позволяют в ряде случаев использовать при обработке жаропрочных материалов недостаточно прочные инструментальные материалы, в первую очередь, твердые сплавы. Вместе с тем при использовании быстрорежущего инструмента по тем же причинам приходится принимать весьма малые скорости резания. Учитывая плохой теплоотвод при обработке жаропрочных и нержавеющих сталей и сплавов, основное значение приобретают охлаждающие свойства СОЖ.
3. Способность сохранять исходную прочность и твердость при повышенных температурах, что приводит к высоким удельным нагрузкам на контактные поверхности инструмента в процессе резания. Усугубляет действие этого фактора низкая теплопроводность этих материалов, благодаря чему высокая температура на контактных поверхностях не позволяет заметно снизить механические свойства по всему сечению срезаемого слоя.
4. Большая истирающая способность жаропрочных и нержавеющих сталей и сплавов, обусловленная наличием в них кроме фазы твердого раствора еще так называемой второй фазы, образующей интерметаллидные или карбидные включения. Эти частицы действуют на рабочие поверхности инструмента подобно абразиву, приводя к увеличенному износу. Большое значение имеют также структурные превращения, происходящие в этих материалах в процессе пластической деформации и сопровождающиеся выпадением карбидов. Все описанные выше твердые включения совместно с высокими температурами на контактных поверхностях приводят к интенсивному абразивному и диффузионному износу режущей части инструмента, к явлениям адгезии (схватывания). Поэтому коэффициенты трения жаропрочных и нержавеющих сталей по твердым сплавам во много раз больше, чем при трении обычной стали 20.
5. Пониженная виброустойчивость движения резания, обусловленная высокой упрочняемостью жаропрочных и нержавеющих материалов при неравномерности протекания процесса их пластического деформирования. Возникновение вибраций приводит к переменным силовым и тепловым нагрузкам на рабочие поверхности инструмента, следовательно, к микро- и макровыкрашиваниям режущих кромок. При наличии вибраций особенно неблагоприятное влияние на износ инструмента оказывают явления схватывания стружки с передней поверхностью инструмента.
Учитывая рассмотренные особенности, процесс резания жаропрочных и нержавеющих сталей и сплавов протекает таким образом: вначале рабочие поверхности инструмента соприкасаются с относительно мягким, неупрочненным металлом и под их воздействием происходит пластическая деформация срезаемого слоя, сопровождаемая значительным поглощением прикладываемой извне (инструментом) энергии. При этом срезаемый слой получает большое упрочнение и приобретает свойства наклепанного металла, т. е. становится хрупким. Запас пластичности при этом в значительной мере исчерпывается и происходит сдвиг – разрушение, образование элемента стружки. Малая теплопроводность этих материалов приводит к резкому снижению отвода тепла в стружку и обрабатываемую заготовку, а следовательно, повышению температуры в зоне контакта режущей части инструмента и заготовки с активизацией процессов адгезии и диффузии. В результате этого значительно увеличиваются износ инструмента и явления налипания (схватывания), вызывающие разрушение режущих кромок. Интенсификации этих процессов способствуют повышенные механические характеристики обрабатываемого материала при высокой температуре, большая истирающая способность материалов, а также переменное воздействие этих факторов, обусловленное вибрациями.
В настоящее время существует много способов облегчения обработки резанием труднообрабатываемых материалов, в том числе жаропрочных и нержавеющих сталей и сплавов. Самыми очевидными из них являются способы, направленные на повышение стойкости применяемых режущих инструментов. Это, прежде всего, правильный выбор марки инструментального материала и геометрии режущей части инструмента, а также обязательное применение охлаждения в зоне резания с использованием различных охлаждающих сред.
При обработке жаропрочных и нержавеющих сталей и сплавов необходимо и целесообразно применение инструментов, изготовленных из инструментальных материалов, обладающих более высокими режущими свойствами: более высокой красностойкостью, хорошей сопротивляемостью абразивному износу и стабильностью режущих свойств. Согласно исследованиям, проведенным в этой области целесообразно предварительную обработку труднообрабатываемых материалов производить твердосплавными резцами, а чистовую – твердосплавными и быстрорежущими. Из быстрорежущих сталей при обработке жаропрочных сплавов наилучшие результаты дают применение кобальтовых и ванадиевых быстрорежущих сталей (Р14Ф4, Р10К5Ф5, Р9Ф5, Р9К9). Их применение приводит к значительному сокращению расхода режущего инструмента, снижению себестоимости выпускаемой продукции и повышению производительности.
Из применяемых твердых сплавов выделяют 3 вида. Первый вид, называемый “износостойким” – Т30К4, Т15К6, ВК3 и др. – сравнительно твердый и обладает высокой сопротивляемостью износу. Второй вид сплавов – Т5К7, Т5К10 и др. – обладает большей вязкостью, но меньшей износостойкостью. Третий вид – ВК6А, ВК8 – имеет наименьшее сопротивление износу, но большую вязкость и нечувствительность к удару. Кроме того при чистовой и отделочной обработке жаропрочных и нержавеющих сталей и сплавов в качестве инструментальных материалов применяют минералокерамику, а также естественные и синтетические сверхтвердые материалы.
Существенное влияние на повышение стойкости инструментов при резании труднообрабатываемых материалов оказывают специальные методы упрочнения их рабочих поверхностей: хромирование, цианирование, электроискровое упрочнение, радиоактивное облучение и др. для быстрорежущих сталей. А на твердосплавные пластины из прочного (вязкого) твердого сплава наносят тонкий слой (

Читайте также:  Сталь 12х13 все размеры

5мкм) другого твердого сплава (TiC), обладающего высокой износоустойчивостью. Для повышения износоустойчивости минералокерамики применяют плакирование – покрытие защитными пленками.
Применение смазывающе-охлаждающих жидкостей при резании металлов увеличивает стойкость режущего инструмента, улучшает качество обработанной поверхности и снижает силу резания. В настоящее время применение технологических сред считают одним из основных способов улучшения процессов резания труднообрабатываемых материалов. Следует отметить, что эффективность применения технологических сред определяется их физико-химическим составом и способом подачи в зону резания.
Эффективными являются такие методы охлаждения режущего инструмента, как высоконапорное охлаждение, подаваемое тонкой струей на заднюю поверхность инструмента, охлаждение распыленной жидкостью и охлаждение углекислотой.
При высоконапорном охлаждении жидкость, вытекая под большим давлением, распыляется и, соприкасаясь с нагретым металлом, быстро испаряется, интенсивно отбирая тепло. Такое охлаждение дает увеличение стойкости инструмента в 3…6 раз по сравнению с сухим резанием. Еще лучших результатов можно достигнуть применением одновременно высоконапорного охлаждения со стороны задней грани резца и подачи жидкости под давлением сверху на стружку. Недостаток высоконапорного охлаждения – разбрызгивание жидкости и образование паров, затрудняющих наблюдение за работой инструмента.
Эти недостатки устраняются при охлаждении зоны резания путем распыления СОЖ сжатым воздухом. При этом уменьшается расход эмульсии. Стойкость инструмента увеличивается в 2…3 раза по сравнению с работой всухую.
Охлаждение углекислотой является наиболее эффективным, однако и более дорогим методом охлаждения. Жидкий углекислый газ, содержащий до 50% твердых частиц углекислоты снегообразной формы, под давлением подается в зону резания. В виде инея эти частицы с температурой -79 °С оседают на поверхность металла и вскипают, поглощая 158 ккал тепла на 1 кг углекислоты.
Методика назначения режимов резания при обработке деталей из жаропрочных и нержавеющих сталей и сплавов в основном такая же, как и при резании обычных конструкционных материалов. Необходимо только учитывать специфические особенности их резания.
При конструировании станков, инструментов и приспособлений для обработки деталей из труднообрабатываемых материалов необходимо обеспечивать:
1) повышенную жесткость механизмов для восприятия больших сил резания с минимальными деформациями;
2) высокую виброустойчивость системы станок-приспособление-инструмент-деталь в условиях резания со значительными ударными нагрузками;
3) незначительные зазоры в механизме подачи станка для равномерного резания упрочняющегося обрабатываемого материала;
4) достаточный запас мощности электродвигателя станка, так как при резании жаропрочных сплавов силы резания больше, чем при обработке обычных конструкционных материалов;
5) приспособления для обработки деталей должны быть прочными и жесткими, в них необходимо предусмотреть каналы для отвода стружки;
6) инструменты должны быть короткими и жесткими.
Кроме всего выше перечисленного добиться улучшения обрабатываемости жаропрочных и нержавеющих сталей и сплавов можно за счет:
1) воздействия на структуру и механические показатели материалов с помощью специальной термической обработки;
2) введения в зону резания ультразвуковых колебаний, облегчающих пластические деформации, снижающих коэффициент трения и повышающих температуру;
3) подогрева обрабатываемого материала в печах или с помощью газовых горелок на станках или путем электроиндуктивного или электроконтактного нагрева;
4) введения в зону резания слабых токов, что позволяет управлять механизмами электродиффузионного и окислительного износа режущего инструмента.

Читайте также:  Коэффициент температурного расширения стали 40х

Литература:
1. Обработка резанием жаропрочных, высокопрочных и титановых сплавов. / Под ред. Н. И. Резникова. – М.: Машиностроение, 1972. – 200 с.
2. Подураев В. Н. Резание труднообрабатываемых материалов. – М.: Высшая школа, 1974. – 587 с.
3. Шифрин А. Ш., Резницкий Л. М. Обработка резанием коррозионностойких, жаропрочных и титановых сталей и сплавов. – М.- Л.: Машиностроение, 1964. – 448с.

Доклад Ткач М. А. Всеукраинская научно-техническая студенческая конференция. ДГМА. 19.04.05.

Источник

Термическая обработка жаропрочных сталей и сплавов

  1. КЛАССИФИКАЦИЯ ЖАРОПРОЧНЫХ СПЛАВОВ ПО ИХ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ

Понятие «жаропрочные сплавы» объединяет большую группу металлических материалов, применяемых для изготовления деталей машин и конструкций, работающих под нагрузкой при повышенных температурах. Интервал таких рабочих температур очень широк (100—1000° С и более). Этим обусловливается большое разнообразие сплавов, используемых в качестве жаропрочных.

При сравнительно невысоких температурах (100—400° С) в качестве жаропрочных могут применяться обычные конструкционные стали (углеродистые и малолегированные), а также сплавы на основе меди, алюминия и титана. При более высоких температурах (500—700° С) применяются легированные стали перлитного, ферритного, (феррито-мартенситного) и аустенитного классов. Для работы при еще более высоких температурах (700— 1000° С) детали изготовляют из высоколегированных сплавов, содержащих железа меньше 50%, а также безжелезных сплавов на основе никеля, кобальта, хрома, молибдена и других металлов.

Для весьма высоких температур (выше 1000—1200° С) используются металлокерамические сплавы.

Разнообразие жаропрочных металлических сплавов, резко отличающихся между собой по химическому составу, способу производства, структуре и свойствам, естественно затрудняет их классифицирование. Наиболее рациональной на наш взгляд является классификация, предложенная П. Б. Михайловым-Михеевым . Она охватывает почти все металлические сплавы (кроме сплавов на основе меди, алюминия и некоторых других) и более полно по сравнению с ранее предложенными классификациями [2]—[5] учитывает признаки, по которым можно сплавы делить на группы.

По способности подвергаться термической обработке жаропрочные сплавы (как и все металлические сплавы вообще) можно разделить на три группы: сплавы, не имеющие вовсе фазовых превращений в твердом состоянии; сплавы, у которых фазовые превращения связаны с перестройкой кристаллической решетки (полиморфные превращения) и сплавы, у которых фазовые превращения обусловлены только изменением предельной растворимости избыточных компонентов при нагревании и охлаждении.

К первой группе относятся главным образом однофазные жаропрочные сплавы-твердые растворы, такие, например, как чисто ферритные и аустенитные стали, а также нихромы (не содержащие избыточных компонентов, образующих фазы выделения), молибдено-вольфрамовые и другие сплавы. Эти сплавы можно подвергать только такой термической обработке, при которой нагрев производится до температур, находящихся ниже линии солидуса.

Вторую группу составляют сплавы, претерпевающие полиморфные превращения. К ним относятся углеродистые стали и жаропрочные чугуны, мало- и среднелегированные стали перлитного и феррито-мартенситного классов, а также титановые, кобальтовые и другие сплавы.

К сплавам третьей группы относятся дисперсионно-твердеющие аустенитные стали, алюминиевые, никелехромовые и другие сплавы.

Сплавы второй и третьей групп можно подвергать всем видам термической обработки.

На фиг. 1 схематически представлена предлагаемая классификация жаропрочных сплавов по способности подвергаться термической обработке. Все сплавы делятся на три группы: сплавы на железной основе, на нежелезной основе и металлокерамические сплавы.

Первые две группы имеют по три подгруппы, в которых сплавы объединены по способности воспринимать термическую обработку. Металлокерамические сплавы в данной книге не рассматриваются.

К сплавам на железной основе отнесены углеродистые и легированные стали и жаропрочные чугуны. Согласно ГОСТ 5632-61 на коррозионностойкие, жаростойкие и жаропрочные стали и сплавы к легированным жаропрочным сталям условно отнесены сплавы, в которых содержание железа больше 50%. К железохромоникелевым сплавам условно отнесены сплавы, основной структурой которых является твердый раствор хрома и других элементов в железе. При этом суммарное содержание никеля и железа в них должно быть больше 65%. К жаропрочным никелевым сплавам по этому же ГОСТу условно отнесены сплавы, основной структурой которых является твердый раствор хрома (и других легирующих элементов) в никеле, если содержание Ni в сплаве превышает 55%.

Такой же принцип, несмотря на его условность, видимо, следует распространить и на другие сплавы на нежелезной основе — называть кобальтовыми, хромовыми и т. д. при содержании в них соответствующих элементов более 50—55%.

2. ВИДЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ, ПРИМЕНЯЕМОЙ ДЛЯ ЖАРОПРОЧНЫХ СПЛАВОВ И ЕЕ ТЕРМИНОЛОГИЯ

Многочисленные разновидности термической обработки, которой подвергаются черные и цветные металлы и сплавы, А. А. Бочвар разделил на пять видов [6]. В основу классификации положены изменения, происходящие в металлах (сплавах) при термической обработке — изменения фазового состава, структуры и свойств. Эта классификация получила широкое признание [7], [8] и др.

Рассмотрим виды термической обработки, применяемые для изделий из жаропрочных сплавов.

Отжиг 1-го рода. Заключается в нагреве до температуры, лежащей ниже линий диаграммы состояния, выдержки при этих температурах и охлаждения с определенной скоростью. Отжигу 1-го рода подвергаются главным образом однофазные жаропрочные сплавы-твердые растворы (нихромы, молибденовольфрамовые сплавы и др.). Для этих сплавов такой отжиг является единственно возможным видом термической обработки, не считая химико-термическую. Отжиг преследует разные цели. Его применяют для снятия внутренних напряжений и восстановления структуры и свойств (прочности, пластичности, электропроводности и др.)» изменившихся в результате предшествовавшей обработки. Такой отжиг называется рекристаллизационным или возвратом. При этом нагрев производят до сравнительно невысоких температур. Отжигу 1-го рода также подвергают однофазные жаропрочные сплавы для устранения дендритной ликвации. В этом случае сплав нагревают до высоких температур, лежащих вблизи линии солидуса, выдерживают при этих температурах длительное время (десятки часов) для более полного и легкого происхождения процесса диффузии. Эта разновидность отжига 1-го рода является гомогенизацией или диффузионным отжигом.

Читайте также:  Где бы не стали работать

Отжиг 1-го рода применим также и для термообработки жаропрочных сплавов, имеющих фазовые превращения. Для его осуществления сплавы нагревают до температур, находящихся ниже линии фазовых превращений. Поэтому его иногда называют низким отжигом. Его применяют главным образом для снятия внутренних напряжений и восстановления структуры и свойств металла, после холодной обработки давлением или резанием.

Все процессы, происходящие при отжиге 1-го рода, являются необратимыми.

Отжиг 2-го рода. Отжигу 2-го рода подвергают только такие жаропрочные сплавы, которые имеют фазовые превращения в твердом состоянии. Если фазовые превращения обусловлены лишь изменением предельной растворимости, то происходит перекристаллизация только избыточных фаз — при нагреве выше линии предельной растворимости они полностью исчезают, растворяясь в основной фазе, а при охлаждении выделяются из твердого раствора, т. е. происходит их новая кристаллизация. Если же в сплаве возможны полиморфные превращения, то фазовые изменения при нагревании и охлаждении протекают во всем объеме — происходит перекристаллизация всех фазовых составляющих. Примером служит образование аустенита при переходе через верхнюю критическую точку при нагревании и образование смеси феррит + цементит при охлаждении у перлитных жаропрочных сталей. В обоих случаях отжиг 2-го рода — это процесс фазовой перекристаллизации. Для жаропрочных сплавов отжиг 2-го рода может быть полным, если нагрев производят до температур, превышающих верхнюю критическую точку, и неполным, если температура нагрева находится между линиями диаграммы фазовых превращений (фиг. 2). Фазовая перекристаллизация, проведенная при более быстром охлаждении (на воздухе), называется иногда (например для сталей) нормализацией. При этом образуется менее равновесная структура.

Жаропрочные сплавы с фазовыми превращениями можно подвергать высокотемпературному диффузионному отжигу (гомогенизации) для устранения или уменьшения дендритной ликвации. По существу гомогенизация для таких сплавов является также разновидностью отжига 2-го рода, так как при этом происходит фазовая перекристаллизация.

Обычно диффузионный отжиг применяется для отливок сложной формы из высоколегированных многокомпонентных сплавов.

Закалка. Закалке могут подвергаться жаропрочные сплавы, не имеющие полиморфных превращений, и те, которые имеют их. В первом случае в результате закалки при комнатной температуре может быть зафиксировано состояние, свойственное высоким температурам, лежащим выше линии фазового превращения. Такую закалку А. А. Бочвар назвал «истинной закалкой». Структура сплава после закалки представляет собой пересыщенный твердый раствор. Характерным примером «истинной закалки» является закалка жаропрочыых дисперсионно-твердеющих аустенитных сталей и никелехромовых сплавов. В обоих случаях охлаждение от температур, лежащих в однофазной области с достаточно большой скоростью (превышающей критическую скорость закалки), фиксирует при комнатной температуре однофазное состояние, устойчивое только при высоких температурах (см. фиг. 2). При комнатной температуре это состояние сплава неустойчиво. Операция, в результате которой появилось такое состояние структуры, является типичной закалкой и нет никакой нужды давать ей другое название, как это делается, например, в технической литературе США, где она называется: «Solid Solution treatment» (обработка на твердый раствор). К сожалению, и в нашей технической литературе закалку сплавов, имеющих фазовые превращения, связанные только с изменением предельной растворимости, иногда называют не закалкой, а аустенизацией. Но этим термином давно пользуются для названия процесса образования аустенита при нагревании стали [9], поэтому нецелесообразно применять его вместо термина «закалка» даже для стали аустенитного класса. Тем более не нужно называть аустенизацией процесс закалки нежелезных жаропрочных, например, никелехромоалюминиевых сплавов. В этих сплавах железо содержится в незначительных количествах (до 10%), а часто является в них лишь неизбежной, хотя и нежелательной, примесью и допускается не более 1—3%. В таких сплавах аустенита вообще нет и, следовательно, нельзя называть закалку их аустенизацией. Во всех случаях, когда в результате быстрого охлаждения из однофазной области образуется неравновесное состояние, представляющее собой или зафиксированное высокотемпературное состояние или какое-либо промежуточное, необычное для низких температур, правильнее называть этот процесс закалкой.

При закалке жаропрочных сплавов, имеющих полиморфные превращения, обычно образуется промежуточное состояние.

Однако и в сплавах, не имеющих полиморфных превращений, наблюдаются случаи, когда охлаждение, даже с весьма большой скоростью, не в состоянии полностью сохранить при комнатной температуре структуру, характерную для высокой температуры.

В этих случаях образуется неустойчивая структура из продуктов распада твердого раствора высокой степени дисперсности. Это сопровождается повышением твердости, прочности, а иногда и хрупкости. В частности, это наблюдается в некоторых высоколегированных никелехромовых сплавах.

Отпуск. Отпуск является всегда операцией вторичной, следующей после закалки, поэтому для упорядочения терминологии нецелесообразно операцию отжига 1-го рода (низкого отжига), которая по режиму похожа на отпуск (температура нагрева лежит ниже критических точек), называть высоким отпуском.

Источник