Раскислители при выплавке стали

Учебные материалы

Это процесс извлечения из готовой сваренной стали кислорода, который присутствует в стали в виде закиси железа (FeO). В качестве раскислителей применяют Mn, Si, Al – элементы у которых сходство с кислородом выше, чем у железа. Отнимая у закиси FeO и образуя соответствующие окислы MnO, SiO2, Al2O3 раскислители делают сталь более качественной.

Присутствие FeO вызывает повышенную хрупкость (хладноломкость) сталей и снижает механические свойства в процессе старения. Образовавшиеся окислы раскислителей переходят в шлак.

По степени раскиленности стали делят на (рисунок 1.5): кипящие раскислители только Mn или Fe-Mn; полуспокойные – Mn(Fe-Mn) и Si(Fe-Si) и спокойные – раскисленные Mn, Si и Al.

Спокойные стали более качественные. Недостатком является ее дороговизна из-за:

  1. введения дополнительных раскислителей Si и Al;
  2. из-за образования в процессе кристаллизации в изложнице усадочной раковины, из-за чего верхняя часть слитка отрезается (до 20–30% объема слитка).

В кипящей усадочной стали раковины не образуется, так как газовые пузыри и неметаллические включения равномерно располагаются в слитке. В дальнейшем, при прокатке в горячем состоянии эти включения завариваются.

У спокойной стали в изложнице поверхность при кристаллизации спокойная (так как кислорода после раскисления осталось мало и газовых выделений нет). У кипящей поверхность в изложнице кипит за счет выделения СО2. Окись углерода диффундирует на поверхность в виде пузырьков, создавая видимость кипения. Образование пузырьков происходит из-за неполной раскисленности стали: 2FeO + С = СО2↑ + 2Fe.

Если в химическом составе стали кремния Si ≤ 0,07 % или следы, то эти стали относятся к кипящим. В полуспокойных сталях содержание кремния изменяется в пределах Si = 0,07 ÷ 0,17 %. Признак спокойных сталей – содержание кремния Si > 0,17 %.

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Спо­собы раскисления стали

Во всех способах производства стали — мартеновском, конвертерном, электросталеплавильном —по ходу плавки по мере выгорания примесей (кремния, марганца и углерода) имеет место постепенное повышение содержания кислорода. В конце окислительного периода плавки содержание растворенного кислорода в жидком металле определяется в основном концентрацией углерода, причем максимальных значений кислород достигает при низком содержании углерода. Задачей раскисления является снижение концентрации растворенного кислорода и возможно полное удаление из металла продуктов раскисления. Оставшийся в металле кислород в неактивной форме в гораздо меньшей степени сказывается на ухудшении свойств готовой стали.

В металлургической практике применяются следующие способы раскисления стали:

  • осаждающее раскисление;
  • диффу­зионное раскисление;
  • раскисление синтетическими шлаками;
  • раскисление в вакууме.

Осаждающее раскисление является наиболее распространенным способом, при котором снижение концентрации растворенного в жидком металле кислорода достигается связыванием его элементами-раскислителями (Mn, Si, Ti, Zr, Al, Ca, РЗМ), обладающими большим сродством к кислороду, чем железо.

При присадке раскислителя Е в металле имеет место взаимодействие х [O] + у [Е] = EyOX (г, ж, тв) с образованием окисла элемента-раскислителя в газообразном, жидком или твердом состоянии, нерастворимого в стали. Степень понижения концентрации растворенного кислорода обусловлена раскислительной способностью элемента-раскислителя, обычно определяемой концентрацией растворенного в жидком железе кислорода, находящегося в равновесии с определенной концентрацией элемента-раскислителя. С увеличением сродства элемента-раскислителя к кислороду растет его раскислительная способность.

Термодинамические данные реакций раскисления приведены в табл.

Образующиеся продукты раскисления в силу их меньшей плотности в той или иной степени удаляются из металла. Полнота очищения жидкой стали от продуктов раскисления зависит от величины, состава и физико-химических свойств частиц, способности их к укрупнению, от вязкости и температуры металла. Наиболее благоприятные условия для укрупнения частиц и их всплывания из жидкой стали создаются при образовании жидких, легкоплавких продуктов раскисления, что свойственно окислам элементов (марганца, кремния) с низкой раскислительной способностью. С повышением раскислительной способности элементов (алюминия, титана, циркония) обычно повышается температура плавления частиц; целесообразно применение комплексных раскислителей Si—Mn, Si—Ca, Ca—Al, Al—Mn—Si, Al—Si—Ca и др.), при действии которых образуются сравнительно легкоплавкие, способные к укрупнению и быстрому всплыванию продукты раскисления.

Наиболее широко в качестве раскислителей применяются марганец, кремний (в виде ферросплавов) и алюминий. Марганец является сравнительно слабым раскислителем, однако он применяется при раскислении всех сталей и незаменим при производстве кипящей стали. При раскислении марганцем, в зависимости от его содержания в жидкой стали образуются растворы х MnO • у FeO в твердом или жидком состоянии. По мере повышения остаточного марганца в металле возрастает MnO в продуктах раскисления, вплоть до образования свободной MnO.

Кремний — более сильный раскислитель. Продуктами раскисления кремния, при повышении содержания его в стали являются жидкие силикаты железа вплоть до твердого кремнезема. При совместном раскислении марганцем и кремнием образуются силикаты марганца и железа, состав которых зависит от соотношений концентрации марганца, кремния и кислорода. В присутствии марганца раскислительная способность кремния повышается.

Алюминий является весьма активным раскислителем. При введении алюминия в избытке, что обычно имеет место в практике раскисления, образуются твердые мелкодисперсные частицы глинозема. При малой добавке алюминия в металл образуются частицы FeО-Аl2O3.

Диффузионное раскисление, основанное на законе распределения закиси железа между металлом и шлаком, сводится к раскислению шлака. Уменьшение концентраций FeO в шлаке за счет его раскислении вызывает диффузию кислорода из металла в шлак до равновесного распределения между обеими фазами при данной температуре.

Раскисление шлака практически осуществляется путем введения на его поверхность порошкообразных раскислительных смесей, содержащих кокс, древесный уголь, ферросилиций, алюминий. При диффузионном раскислении металл не загрязняется продуктами раскисления, но для его осуществления необходимы восстановительная атмосфера и длительное время, что сопряжено с понижением производительности печи. Этот способ раскисления применяется при плавке высококачественной стали в электродуговых печах, где без особых затруднений можно создавать восстановительную атмосферу.

Раскисление стали синтетическими шлаками (кислыми или основными с малым содержанием FeO) также основано на экстрагировании FeO из металла в соответствии с законом распределения. При этом способе раскисления сталь выливается в ковш с жидким синтетическим шлаком. Благодаря эмульгированию шлака раскисление протекает с большой скоростью. При обработке стали синтетическими основными шлаками, кроме раскисления, возможно обессеривание металла.

Практика раскисления. В зависимости от степени раскисленности стали различают кипящую, полуспокойную и спокойную сталь.

Кипящая сталь — частично раскисленная (марганцем и углеродом) сталь, застывающая в изложницах с обильным выделением газов, являющихся в основном (до 90% СО) продуктом взаимодействия растворенных в жидком металле углерода и кислорода. Интенсивность газовыделения предопределяет строение и качество слитка кипящей стали. Кипящую сталь выплавляют в мартеновских печах и конвертерах с содержанием углерода от 0,02 до 0,27 и редко до 0,35% и содержанием марганца до 0,6%. Основным раскислителем кипящей стали является углеродистый 75%-ный ферромарганец, который вводится в печь или в ковш. Экономически более целесообразно раскисление в ковше, при этом снижается расход ферромарганца (до 25%) и сокращается продолжительность плавки (на 5—15 мин). Угар марганца при раскислении в ковше составляет 20—40%, при раскислении в печи до 35—70%.

Полуспокойная сталь по степени раскисленности занимает промежуточное место между кипящей и спокойной сталью. Количество раскислителей, добавляемых в металл, недостаточно для полного предотвращения выделения газов, поэтому в слитке полуспокойной стали наблюдаются газовые пузыри и слаборазвитая усадочная раковина.

Полуспокойная сталь выплавляется в мартеновских печах и конвертерах, она содержит 0,1—0,3% С; 0,35—0,85% Mn и до 0,15% Si. Раскисление полуспокойной стали производится частично в печи (ферромарганцем, доменным ферросилицием) и затем в ковше (ферросилицием, карбидом кремния, алюминием, ферротитаном) или же только в ковше. Иногда добавляют небольшое количество алюминия (0,02—0,5 кг/т) в изложницу, вводя его в центровую в процессе разливки.

Спокойная сталь раскисляется избытком сильных раскислителей, исключающим возможность взаимодействия растворенного кислорода с углеродом во время охлаждения и затвердевания металла в изложнице.

Многообразные по химическому составу марки спокойной стали производятся в мартеновских и электродуговых печах и конвертерах.

Практика раскисления спокойной стали весьма различна. Во всех методах стремятся получить хорошо раскисленную сталь с минимально возможным содержанием оксидных включений, наличие которых сильно сказывается на качестве металла. На загрязненность стали оксидными включениями определенным образом влияет способ и последовательность введения раскислителей. В качестве раскислителей применяются углеродистый и малоуглеродистый ферромарганец, зеркальный чугун, доменный и 45%-ный ферросилиций, силикомарганец, алюминий, ферроалюминий, силикокальций, силикоалюминий, альсикаль, карбид кремния, силикоцирконий и др. Предварительное раскисление производится в печи слабыми раскислителями, более сильные вводятся в ковш. Иногда сталь раскисляют в ковше, без предварительного раскисления кремнием в печи.

Для уменьшения загрязненности стали оксидными включениями и для более равномерного их распределения в последнее время применяют введение алюминия, силикокальция или альсикаля в ковш при помощи специальных трубок. Предложен также метод раскисления стали в ковше жидким алюминием.

Читайте также:  Европейский стандарт нержавеющей стали

Источник

Раскисление стали

Процесс раскисления стали является весьма сложным. Обычно его описывают механизмом из четырех последовательных шагов.
1) Растворение и гомогенизация раскислителя в стальном расплаве с тем, чтобы направить реакцию раскисления в направлении образования оксидов.
2) Стимулирование образования критических зародышей продуктов раскисления в гомогенной среде.
3) Выполнение собственно раскисления за счет увеличения количества продуктов реакции.
4) Отделение продуктов реакции раскисления путем их флотации из расплава с целью повышения чистоты стали.

Свойства раскислителей стали

Из этого четырехшагового механизма раскисления вытекают требования к свойствам и качеству раскислителей для получения максимально чистой стали у конечного потребителя.

Раскислитель должен быть в виде, который позволяет ему легко растворяться в расплаве. Чистые элементы, такие как кремний, алюминий и титан, с трудом растворяются в стали из-за плотной оксидной пленки на из поверхности. Поэтому их применяют в виде ферросплавов, у которых нет проблем с растворением в жидкой стали.

Для облегчения процесса образования зародышей продуктов раскисления производят предварительную обработку расплава алюминием. При этом образуются поверхности между оксидом алюминия и сталью, на которых легче возникать зародышам других раскислителей.

Рост продуктов реакции раскисления зависит от вида раскислителя. Жидкие частицы легче поддаются коалесценции, чем твердые. Поэтому стремятся проводить раскисление с образованием жидкого продукта реакции.

Раскислители добавляют в виде их ферросплавов или чистых металлов. Алюминий добавляют в виде дроби, а углерод – в виде графита или антрацита.

Раскисление стали кремнием и марганцем

Раскисление только кремнием является весьма эффективным с образованием твердых частиц SiO2. Раскисление только марганцем дает жидкие продукты реакции, но не является вполне эффективным. Когда эти два раскислителя применяют вместе, то сначала образуется продукт раскисления марганцем — жидкий шлак типа FeO-MnO, который захватывает твердый продукт раскисления кремнием – частицы SiO2. Результирующим продуктом в этом случае является шлак типа Fe-MnO-SiO2, в котором активность оксидов кремния и магния намного ниже, чем когда они действуют раздельно. Это повышает эффективность этих раскислителей по снижению уровня содержания кислорода в стали.

Совместное применение марганца и кремния их добавляют в расплав в определенном соотношении. Марганец и кремний используют в соотношении от 7:1 до 4:1 для получения тонкой пленки жидкого шлака как продукта реакции раскисления. Ферросплав Fe-Mn добавляют первым, а затем ферросплав Fe-Si .

Раскисление стали алюминием

Алюминий является очень эффективным раскислителем, так как оксид алюминия Al2O3 – это намного более стабильный оксид, чем SiO2, MnO и другие. Однако оксид Al2O3 остается твердым даже при температуре литья стали и поэтому его не применяют в одиночку, если требуется высокая степень очистки стали от кислорода.

Алюминий обычно применяют совместно с марганцем и кремнием, чтобы оксид алюминия имел шанс соединится с тонким жидким шлаком.

Другие раскислители стали

Бор, цирконий, титан также являются сильными раскислителями. Степень раскисления, которая достигается при применении 8 % кремния, может быть достигнута путем добавки всего 0,7 % бора или 0,1 % титана или 0,002 % алюминия или 0,0003 % циркония.

Флотация продуктов раскисления

Применение раскислителей, отличных от углерода, приводит к образованию жидких или твердых продуктов в виде дисперсной фазы в расплаве стали. Поскольку эти оксиды легче, чем сталь, то они поднимаются на поверхность расплава и их можно снимать в виде шлака. Обычно частицы радиусом менее 10 -3 см не способны подниматься на поверхность расплава, в частицы радиусом более чем 10 -2 см удаляются из расплава почти полностью. Для эффективного удаления частиц принимают меры по их коалесценции в более крупные частицы.

Полезные мелкодиспресные продукты раскисления стали

Иногда продукты раскисления выгодно оставлять в очень мелкодисперсной форме. Алюминий образует очень мелкодисперсные частицы Al2O3, которые не склонны коагулировать и поверхность этих частиц работает как места зарождения твердой фазы при затвердевании стали. Огромное количество этих мест зарождения дает очень мелкую зеренную структуру стали. Цирконий специально добавляют, что бы предотвратить сегрегацию сульфидов в быстрорежущих сталях.

Источник

Раскисление металла в восстановительный период

Раскисление стали

Высокая концентрация кислорода, растворенного в стали (повышенная активность кислорода), полученная после окончания окислительных процессов, не дает возможности получить качественный слиток, так как понижение температуры металла в процессе кристаллизации приводит к возобновлению реакции окисления углерода [С] + [О] → СОгаз и образованию газовых пузырей, как правило, остающихся в слитке и не всегда заваривающихся при обработке давлением. Неиспользованный при протекании этой реакции кислород выделяется из металлического расплава в конце кристаллизации в виде пленок оксида железа FеО по границам зерен и резко ухудшает механические свойства стали. Это вызывает необходимость проведения раскисления металла. Раскислением называют технологическую операцию, приводящую к снижению концентрации растворенного кислорода (или активности кислорода) в стали до пределов, обеспечивающих требуемое качество готового металла. Содержание растворенного в металле кислорода можно уменьшить или за счет снижения общего содержания кислорода, или путем связывания растворенного кислорода в прочные соединения, не растворяющиеся в стали. Известны следующие способы раскисления стали: осаждающее (ранее не совсем точно называвшееся глубинным) раскисление; экстракционное, или диффузионное, раскисление (раскисление шлаком); раскисление обработкой вакуумом и электрохимическое раскисление. В практике сталеплавильного производства применяют первые два способа, в последнее время все чаще используется и раскисление обработкой вакуумом.

При осаждающем раскислении в металлический расплав вводят элементы-раскислители, обладающие большим химическим сродством к кислороду, чем железо. В результате протекания реакции между растворенным кислородом и раскислителем образуется практически не растворимый в железе оксид, плотность которого меньше плотности жидкой стали, т. е. растворенный кислород переводится в нерастворимый оксид и в расплаве образуется своеобразный «осадок» из нерастворимых оксидов. Полученный «осадок» всплывает или каким-либо другим способом удаляется в шлак. Отсюда и название способа – осаждающее раскисление. Так как раскислители обычно вводят (или пытаются вводить) в глубину металлического расплава, то данный способ раскисления иногда называют глубинным раскислением. В общем виде осаждающее раскисление можно изобразить следующей схемой:

где R – элемент-раскиcлитель.

В металлургической практике для осаждающего раскисления стали чаще всего используют (как наиболее дешевые и доступные) марганец в виде ферромарганца, кремний в виде ферросилиция, алюминий, углерод в различном виде. Иногда для раскисления стали используют более дорогие сплавы щелочно-земельных металлов (чаще кальция) и редкоземельных металлов (с преобладанием церия). Все реакции раскисления такими раскислителями идут с выделением тепла, поэтому глубина протекания реакции раскисления увеличивается при понижении температуры (равновесие реакции раскисления сдвигается вправо, в сторону образования дополнительного количества оксида раскислителя). Оксиды элементов-раскислителей, образующиеся в процессе раскисления, в отечественной специальной литературе принято называть продуктами раскисления. Продукты раскисления, образующиеся в жидком металле в процессе технологической операции раскисления, принято называть первичными продуктами раскисления. В течение всего времени существования научно обоснованных технологий сталеплавильного производства специалисты стремились проводить осаждающее раскисление так, чтобы первичные продукты раскисления возможно более полно и возможно быстрее удалялись из металла. Этой проблеме были посвящены многие исследования, результаты которых позволили металлургам быстро и почти полностью удалять из металла первичные продукты раскисления. Но в процессе кристаллизации стали при понижении температуры реакции осаждающего раскисления продолжают идти, при этом образуются «новые» (вторичные) продукты раскисления, которые уже практически не могут удалиться из кристаллизирующего очень вязкого металла и остаются в стали. Поэтому после осаждающего раскисления готовая сталь всегда содержит некоторое количество неметаллических включений – продуктов раскисления, что и является главным недостатком данного способа раскисления. Но благодаря простоте осуществления операции и большой скорости удаления растворенного кислорода из металла осаждающее раскисление остается основным способом раскисления стали.

Для уменьшения количества и размеров вторичных (кристаллизационных) продуктов раскисления очень важно понизить концентрацию растворенного кислорода при раскислении жидкого металла до возможно более низких значений. Остаточная концентрация растворенного кислорода в металле зависит от температуры, концентрации элемента раскислителя и раскислительной способности элемента- раскислителя. Раскислительной способностью элемента-раскислителя принято называть концентрацию растворенного кислорода [O]р (или активность кислорода a[O]), соответствующую конкретной концентрации элемента-раскислителя, при которой он находится в равновесии с кислородом при данной температуре. Данные о раскислительной способности различных раскислителей получают в лабораторных исследованиях, так как в производственных условиях достичь равновесия реакций раскисления не удается. Обычно сравнение раскислительной способности раскислителей проводят при температуре 1600 °С. Для практических нужд удобнее всего использовать данные о раскислительной способности, представленные графически в координатах [O]р – [R] или a[O] – [R], lga[O] и т.д. Следует отметить, что данные о раскислительной способности тех или иных раскислителей, полученные разными исследованиями, часто сильно различаются. Это объясняется тем, что применяется различное оборудование, различные методики исследования; а также различной исходной концентрацией растворенного кислорода и различным составом продуктов раскисления.

Кислород — постоянный спутник железа и стали. Максимальная растворимость кислорода в жидкой стали при температуре ее плавления не превышает 0,22%. С повышением температуры растворимость кислорода в жидкой стали увеличивается. Кислород в стали частично находится в виде раствора, входя, главным образом, в состав неметаллических включений: оксидов — FeO, MnO, SiO2, Al2O3, CaO и ряда их соединений между собой и серой (так называемые силикаты, алюминаты, шпинели, оксисульфиды и пр.).

Читайте также:  Углеродистые стали для строительных конструкций

Кислород ухудшает механические свойства стали, снижает ее ударную вязкость при низких температурах, уменьшает временное сопротивление (прочность на разрыв), повышает неоднородность металла. Комбинированные кислородные и сернистые соединения образуют легкоплавкие неметаллические включения, располагающиеся по границам зерен. В процессе обработки давлением (прокатка или ковка) в таком металле при высоких температурах возможно образование трещин и рванин (явление красноломкости).

Форма, количество и состав кислородных включений в готовой стали зависят от способов раскисления металла, внепечной обработки, разливки и условий затвердевания расплава, а также от характера процессов выплавки стали (основной или кислой). Раскисление стали проводят таким образом, чтобы уменьшить в ней содержание кислорода и неметаллических включений и понизить их вредное влияние на качество металла. Для этого применяют следующие методы раскисления стали: диффузионное — воздействие на металл шлаком с низким содержанием оксидов железа; осадочное — воздействие на металл непосредственно элементами-раскислителями; комбинированное — одновременное воздействие на металл шлаком и элементами- раскислителями.

При равновесии отношение содержания кислорода в железе [О] к содержанию монооксида железа в шлаке (FeO) является постоянной величиной и зависит от основности шлака и температуры. При основности шлака, равной 2, и температуре 1600 °С данное отношение составляет величину 0,005. Если содержание (FeO) в шлаке ниже равновесного, то обеспечивается переход кислорода в виде FeO из металла в шлак. Другими словами, обработкой ванны безжелезистым шлаком можно добиться снижения содержания кислорода в металле.

Присадка в печь порошкообразных материалов — кокса, ферросилиция, алюминия — обеспечивает взаимодействие элементов-рас- кислителей с (FeO) шлака и снижение его концентрации ниже 0,5%. Если конечное содержание (FeO) в шлаке 0,5%, то конечное содержание кислорода в металле в условиях равновесия, определяемое из соотношения [О]кон/0,5 = 0,005, составит: [0]кон = 0,0025%.

Практически равновесие между шлаком и металлом в восстановительный период плавки (доводки) не достигается и содержание кислорода в металле перед выпуском из электропечи колеблется в пределах 0,003—0,012%. При этом уменьшение содержания кислорода в металле происходит, в основном, за счет диффузии кислорода из металла в шлак, поэтому такой способ раскисления называют диффузионным. Диффузионное раскисление ванны металла имеет место при выплавке стали в дуговых печах емкостью до 25 т. Процесс осуществляют под «белым» *(серым) или карбидным шлаком. Белый шлак получают раскислением основного шлака коксом, а затем порошками ферросилиция и алюминия. Карбидный — в результате интенсивного раскисления известкового шлака порошком кокса.

Современные большегрузные дуговые печи оборудуют высокопроизводительными установками для отсоса и очистки отходящих газов, которые при работе создают интенсивный газообмен в рабочем пространстве.

С учетом этого восстановительный шлак требуемых состава, консистенции и раскисленности наводят на жидкой ванне в печи за 15-20 мин до выпуска плавки в ковш путем интенсивной присадки порошков кокса, ферросилиция и алюминия. Период доводки металла (корректировка химического состава стали, нагрев металла и др.) проводят в течение минимального времени под известковым шлаком с основностью 3—4.

Диффузионный способ рафинирования металла позволяет существенно снизить загрязненность стали продуктами раскисления — неметаллическими включениями, так как взаимодействие происходит в шлаке и на поверхности раздела металл-шлак. Однако процесс малопроизводителен. Формирование восстановительного основного шлака к моменту выпуска плавки из большегрузной печи позволяет существенно повысить эффективность взаимодействия фаз в момент слива шлака и металла и тем самым обеспечить высокую степень рафинирования стали от кислорода и серы.

Раскисление стали путем непосредственного ввода в жидкий металл раскислителей в виде кусков или порошка называют глубинным или осадочным. Оно имеет место в металле на разной глубине в зависимости от удельного веса материала-раскислителя, размеров его кусков и способа ввода в металл. Эффект осадочного раскисления металла возрастает с уменьшением температуры плавления веществ- раскислителей и с повышением их растворимости в железе. Сочетание процессов осадочного раскисления металла с диффузионным взаимодействием элементов-раскислителей с кислородом относят к комбинированным методам.

Способы раскисления металла

В восстановительный период электроплавки раскисление металла осуществляют диффузионным способом, при котором реакция раскисления, т. е. связывание кислорода в прочные оксиды, протекает не в металле, а в шлаке, и металл, следовательно, не загрязняется продуктами раскисления. Это основное преимущество диффузионного раскисления перед глубинным. Другим преимуществом диффузионного раскисления является более слабое развитие реакции окисления металла шлаком во время и после выпуска металла из печи. Этим, в частности, объясняется незначительный угар легирующих элементов и раскислителей в электропечах,

К недостаткам диффузионного раскисления относятся:

  • уменьшение производительности печи;
  • снижение стойкости откосов и подины, особенно при раскислении шлака кремнием, так как образующийся кремнезем взаимодействует с основной футеровкой;
  • восстановление фосфора из шлака в металл, что вызывает необходимость тщательного удаления окислительного шлака;
  • повышенный расход раскислителей и необходимость их измельчения;
  • сложность осуществления герметизации печей (особенно большой емкости) для исключения подсоса воздуха.

Несмотря на отмеченные недостатки дуффузионного раскисления, его преимущества, связанные с возможностью получать хорошо раскисленный металл с низким содержание серы и неметаллических включений столь очевидны при производстве качественной и высококачественной стали, что этот способ находит широкое распространение при выплавке стали в электропечах.

Однако для уменьшения отрицательного влияния диффузионного раскисления металла в последнее время получила распространение технология, сочетающая преимущества диффузионного и глубинного раскисления. В этом случае перед началом диффузионного раскисления в металл присаживают кусковые раскислители: ферромарганец, ферросилиций, алюминий и т.д.

Иногда глубинное раскисление применяют и для окончательного раскисления металла.

Для диффузионного раскисления металла широко используют углерод, который дают на шлак чаще всего в виде коксика или электродного боя. При достаточно большом расходе коксика или электродного боя и высоком содержании CaO в шлаке в зоне дуг под электродами образуется карбид кальция по реакции

Карбид кальция, обладая большим сродством к кислороду, взаимодействует с оксидами железа шлака:

Под карбидным шлаком (>2% CaCr) содержание FeO в шлаке может быть снижено до 0,5%, чему соответствует равновесное содержание кислорода в металле 0,0012% в металле при 1600° С. Подобное содержание кислорода в металле не может быть достигнуто даже при 0,3% Ti. Особенностью углерода как раскислителя является малое влияние температуры на его сродство к кислороду. Относительная дешевизна коксика и электродного боя и хороший эффект раскисления ими объясняет широкое применение их для диффузионного раскисления шлака.

В зависимости от содержания карбида кальция и шлаке, а следовательно, и степени его раскисления шлак восстановительного периода разделяют на белый (до 2% CaC2) и карбидный (>2% CaC2). Под белым шлаком выплавляют конструкционные стали с содержанием углерода ниже 0,35%, под карбидным шлаком — средне- и высокоуглеродистые стали.

Иногда рафинирование металла в окислительный период проводят под известково-глиноземистым, известково-шамотным или магнезиально-глиноземистым шлаками.

Диффузионное раскисление под белым шлаком

После скачивания окислительного шлака в ванне наводят шлак из извести и плавикового шпата в соотношении 3:2 и в количестве 2—4% от массы металла. Жидко-подвижный шлак образуется через 10—15 мин и на него задают восстановительную смесь из извести, плавикового шпата и молотого просеянного кокса или древесного угля с размером частиц не более 0,5—1,0 мм в соотношении 8:2: 1.

В результате раскисления шлака углеродом кокса содержание FeO в нем примерно через 40 мин снижается до 1,5%, и проба шлака после остывания принимает серый цист вместо черного в начале восстановительного периода, когда в шлаке содержится относительно много оксидов железа.

Вследствие возможности науглероживания металла дальнейшее его раскисление проводят кремнием. В шлаковую смесь вводят мелкоизмельченный ферросилиций марок ФС45 и ФС75. Состав шлаковой смеси следующий: четыре части извести, одна часть плавикового шпата, одна часть кокса и одна часть ферросилиция. Раскисление шлака кремнием длится

20 мин. Около 50% Si, вводимого из шлака ферросилицием, усваивается металлом.

Раскисление шлака кремнием иногда производят с начала восстаковительного периода, что устраняет науглероживание металла. Однако содержание кремния в металле возрастает, он реагирует с растворенным в металле кислородом и образующиеся продукты раскисления частично остаются в металле. Поэтому загрязненность металла неметаллическими включениями при такой технологии может возрасти.

Белый шлак имеет обычно следующий состав 55— 65% CaO, 10—20% SiO2, до 1% FeO, 0,4% MnО, 12— 16% MgO, 2-3% Al2O3, 5-10% CaF2, 1% CaS, до 2% CaC2. Проба белого шлака при остывании рассыпается, что связано с присутствием в нем силиката кальция 2 CaO • SiO2, который при 675° С меняет свою модификацию, увеличиваясь при этом в объеме.

Для получения относительно раскисленного металла необходимо выдерживать металл под белым шлаком

1 ч, периодически присаживая некоторое количество раскислительной смеси с коксом или ферросилицием. Хороший белый шлак пенится в печи, густой шлак затрудняет нагрев металла и протекание диффузионных процессов. Поэтому необходимо непрерывно поддерживать нормальную консистенцию шлака, своевременно увеличивая в смеси количество плавикового шпата.

Иногда увеличение вязкости шлака вызывается повышением содержания MgO в шлаке в результате разрушения откосов и подины. В этом случае шлак необходимо скачать и навести новый. Жидкий шлак исправляют присадкой извести.

Читайте также:  Образцы чистоты поверхности сталь п

Диффузионное раскисление под карбидным шлаком

При проведении восстановительного периода под карбидным шлаком металл вначале покрывают шлаковой смесью того же состава, что и при раскислении под белым шлаком. После образования равномерного слоя жидкоподвижного шлака в печь дают смесь из извести, плавикового шпата и молотого кокса в соотношении 3:1:1. Общее количество шлака в восстановительный период составляет 4% в электропечах большой емкости и 7—8% в печах малой емкости (от массы металла).

Карбид кальция образуется в зоне дуг с большим поглощением тепла, поэтому печь хорошо уплотняют и к ней подводят повышенную мощность. Печь не открывают в течение 20—30 мин. Внешним признаком образования карбидного шлака является выбивание из-под заслонок черного дыма.

Карбид кальция из зоны дуг разносится по всему объему шлака. Он является сильным раскислителем, взаимодействуя с FeO по реакции (CaC2) + 3(FeO) = 3[Fe] + 2 <СО>+ (CaO). Карбид кальция частично восстанавливает кремний из оксида кремния шлака. Поэтому в процессе раскисления металла карбидным шлаком на 0,05—0,1% возрастает содержание кремния в металле. Карбидный шлак плотно прилипает к ложке, а при замачивании ошлакованного инструмента в воде чувствуется специфический запах ацетилена.

Раскисление под карбидным шлаком продолжается не менее 1 ч. Для поддержания в шлаке необходимого содержания карбида кальция в печь периодически задают молотый кокс с известью и плавиковым шпатом, если необходимо уменьшить вязкость шлака.

Существенным недостатком ведения плавки под карбидным шлаком является заметное науглероживание металла в печи и во время выпуска, а также прилипание карбидного шлака к металлу, что приводит иногда к появлению в готовом металле относительно крупных шлаковых включений. Для устранения этого явления карбидный шлак примерно за 30 мин до выпуска переводят в белый. Для этого в печь присаживают известь с плавиковым шпатом, при этом увеличивается общее количество шлака и снижается содержание в нем карбида кальция. Иногда дополнительно открывают рабочее окно, способствуя таким образом, окислению карбида кальция. Если и после этого шлак остается карбидным, то часть шлака (∼1/3) удаляют из печи и забрасывают в печь шлаковую смесь из извести, плавикового шпата и шамотного боя.

Карбидный шлак имеет следующий химический состав: 55-65% CaO, 10-15% SiO2, до 0,5% FeO, до 0,3% MnO, 6—10% MgO, 2-3% Al2O3, 1—2% CaS, 2— 4% CaC2, 8—12% CaF2.

Основное отличие карбидного шлака от белого по составу заключается в несколько более низком в первом шлаке содержании оксидов железа и марганца, а также повышенном содержании карбида кальция.

Раскисление под известково-глиноземистым шлаком

При выплавке нержавеющих и им подобных сталей диффузионное раскисление металла в восстановительный период проводят под известково-глиноземистым или шамотным шлаком. В этом случае устраняется возможность науглероживания металла. Например, на Златоустовском металлургическом заводе после скачивания окислительного шлака наводится новый шлак из извести и отработанного флюса электрошлакового производства (

40% Al2O3) в соотношении 2:1 в количестве

2% от массы металла. Для раскисления известково-глиноземистого шлака применяют порошкообразный ферросилиций, алюминий и силикокальций.

Глубинное и диффузионное раскисление металла

После скачивания окислительного шлака на открытое зеркало металла присаживают кусковые раскислители: ферромарганец, ферросилиций, силикомарганец, алюминий и т.д. Расход раскислителей должен обеспечить содержание марганца в металле на нижнем пределе в заданной марке стали, введение 0,15—0,2% кремния и 0,05—0,1% алюминия. Затем загружают шлаковую смесь и после ее расплавления шлак обрабатывают раскислительными смесями с постепенно уменьшающимся количеством порошка кокса. При такой обработке образуется слабокарбидный или белый шлак, содержащий

Раскисление алюминием

Алюминий – очень сильный раскислитель (рис. 3.7). Алюминий, присутствующий в стали в сравнительно небольших количествах (0,02…0,04 %), обеспечивает получение очень низких концентраций растворенного кислорода (менее 0,003 %) в металле. При раскислении алюминием в стали могут образоваться либо мелкие включения чистого глинозема Al2O3 с температурой плавления около 2050 °С, либо легко укрупняющиеся соединения типа nFeO · mAl2O3 , обычно с температурой плавления ниже температуры жидкой стали. Высокие значения σм-вкл на границе жидкий металл-твердое включение глинозема существенно облегчают отделение этих включений от металла и ассимиляцию их шлаком. Кроме того, при введении алюминия в расплав часть алюминия взаимодействует с растворенным азотом, образуя нитриды типа AlN и уменьшая вероятность старения стали. Мелкие твердые включения глинозема и нитридов алюминия в процессе кристаллизации стали регулируют размер зерна (уменьшают его размеры). Поэтому раскисление алюминием очень широко распространено. Применяют либо чистый алюминий (чушки, крупку, порошок, проволоку и т.д.), либо сплавы алюминия.

Раскисление кремнием

Кремний – достаточно сильный и сравнительно недорогой раскислитель (рис. 3.7), поэтому он применяется в производстве стали. При раскислении жидкого металла кремнием в зависимости от окисленности металла и концентрации кремния в стали образуются или жидкие силикаты железа (мало [Si] и много [О]), или твердый кремнезем SiO2 (много [Si] и мало [О]). При наличии основного шлака раскислительная способность кремния возрастает. Однако удаление образующихся при раскислении силикатов из металла несколько затруднено, так как они хорошо смачиваются железом. Обычно для раскисления стали кремнием используют ферросилиций и силикомарганец различных марок.

Раскисление стали в кислой электропечи

В кислой электропечи углеродистую сталь обычно выплавляют без диффузионного раскисления в печи. Диффузионное раскисление применяют лишь иногда при выплавке легированной стали.

Раскисление углеродистой стали

В окислительный период металл частично раскисляется восстановившимся кремнием. В конце окислительного периода в ванну присаживают ферромарганец. Повышение содержания марганца в металле способствует восстановлению кремния до 0,2—0,3% по реакции

2 [Mn] + (SiO2) = [Si] + 2 (MnO). (160)

За 7—10 мин до выпуска в ванну присаживают ферросилиций для получения заданного содержания кремния; за 3—5 мин до выпуска вводят ферромарганец для окончательного корректирования содержания марганца в металле.

При расчете необходимого количества ферросилиция необходимо учитывать угар кремния (5—10%) и марганца (15—20%). Иногда ферромарганец при выплавке углеродистой стали присаживают в ковш. Угар марганца в этом случае не превышает 10%. Окончательно металл раскисляют алюминием в количестве 160 —200 г/т при отливке слитков и 1—1,5 кг/т при использовании жидкой стали для фасонного литья. Причем 0,5—0,6 кг/т присаживают во время выпуска, остальное при разливке.

Раскисление легированной стали

При выплавке легированной стали в электропечах содержание серы и фосфора в шихте не должно превышать 0,04%. При выплавке стали, содержащей никель и молибден, в завалку используют содержащие указанные элементы отходы, что уменьшает расход легирующих присадок. Расплавление ведут как при выплавке углеродистой стали. После расплавления отбирают пробу металла на полный химический анализ (С, Cr, Ni, Mo, Cu, S, P) и, если содержание серы и фосфора не превышает заданного, в ванну загружают при необходимости никель и ферровольфрам.

После проведения чистого кипения иногда проводят операцию «перекипа», для чего в ванну присаживают чугун или углеродистый ферромарганец (5—7 кг/т). После этих присадок ванна бурно вскипает, что способствует удалению газов.

Легированную сталь выплавляют иногда с удалением 60—80% окислительного шлака, что уменьшает угар легирующих элементов. Для наведения нового шлака в печь загружают смесь из 1—2% кварцевого песка и 0,5—1 % извести или известняка.

Раскисление легированной стали в кислой электропечи может осуществляться либо диффузионным, либо глубинным методами. Если плавку проводят без диффузионного раскисления металла, то после окончания чистого кипения в ванну присаживают для предварительного раскисления силикомарганед (2—4 кг/т) или ферромарганец и ферросилиций. После тщательного перемешивания ванны присаживают феррохром. Не позже чем за 10 мин до выпуска присаживают ферросилиций для легирования стали. Ферромарганец для легирования присаживают непосредственно перед выпуском. При выпуске из печи металл окончательно раскисляют силикокальцием (1,5—2,5 кг/т), алюминием и ферротитаном.

В случае диффузионного раскисления металла после проведения чистого кипения и «перекипа» на шлак задают коксик в количестве 0,2% от массы металла и иногда молотый ферросилиций. Вязкость шлака регулируют присадками извести или известняка. После присадки кокса ванну выдерживают в течение 5—10 мин. Получив результаты анализа, проводят предварительное раскисление металла силикомарганцем (4 кг/т) или ферросилицием и ферромарганцем. Легирование металла проводят после предварительного раскисления. Ферросилиций присаживают за 10 мин до выпуска, а ферромарганец — непосредственно перед выпуском. Окончательно металл раскисляют при выпуске алюминием (1 кг/т) и силикокальцием (2—3 кг/т).

Ниже приведена длительность плавок различных сталей в кислых электропечах емкостью 7 т по данным одного из уральских машиностроительных заводов.

Производительность кислой электропечи на 15—30% выше производительности основной печи.

Раскисление металла обработкой в вакууме

Раскисление металла обработкой вакуумом основано на том, что равновесие реакции

в вакууме сдвигается:

в сторону образования дополнительных количеств монооксида углерода в результате снижения Рсо, а концентрация растворенного кислорода (активность кислорода) в металле при этом уменьшается. Иногда такой способ называют углеродное раскисление в вакууме, или вакуумно-углеродное раскисление. Раскисление металла углеродом в вакууме эффективно и протекает достаточно быстро лишь при обработке нераскисленного металла, лучше при высоком содержании углерода в стали и при хорошем перемешивании металла. После вакуумноуглеродного раскисления проводят окончательное осаждающее раскисление металла. Внепечное раскисление металла углеродом в вакууме в настоящее время довольно широко применяется в практике сталеплавильного производства, особенно в случае выплавки высококачественных сталей, где необходима низкая степень загрязненности оксидными неметаллическими включениями.

Источник