Реакция нитрата ртути с хлоридом олова

Реакция с хлоридом ртути (II)

Олово (II) восстанавливает соединения ртути (II) до металлической ртути, выделяющейся, как и металлический висмут, в виде черного осадка. Реакция протекает в две стадии. Вначале ртуть (II) восстанавливается до ртути (I), а затем — до металлической ртути:

Методика. В пробирку вносят 3-5 капель солянокислого раствора хлорида олова(II) и прибавляют 2-3 капли раствора хлорида ртути(II) — сулемы НgСl2. Выпадает белый осадок каломели Нg2Сl2, который постепенно чернеет за счет выделяющейся металлической ртути.

2. Аналитические реакции катиона свинца Рb 2+

Реакция с НС1 (хлорид-ионами)

Катионы свинца образуют с НС1 (хлорид-ионами) белый осадок хлорида свинца РbCl2:

Хлорид свинца растворим в воде, особенно при нагревании, поэтому катионы Рb 2+ осаждаются из растворов хлорид-ионами не полностью. Осадок хлорида свинца растворяется в горячей воде; при охлаждении раствора из него снова выпадает хлорид свинца, но уже в форме игл. Из разбавленных щелочных растворов выпадает осадок гидроксида свинца; из концентрированных щелочных растворов осадок хлорида свинца не выпадает.

Методика. В пробирку вносят 3-4 капли раствора нитрата свинца Рb(NO3)2, прибавляют 3-4 капли раствора соляной кислоты. Выпадает белый осадок хлорида свинца. К полученной смеси приливают 1,5 мл дистиллированной воды и нагревают до растворения осадка. При охлаждении раствора из него снова выпадает осадок хлорида свинца в виде игл.

Реакция с KI (иодид-ионами)

Катионы свинца при взаимодействии в растворах с KI (иодид-ионами) образуют желтый осадок иодида свинца, растворимый в избытке реактива с образованием тетраиодоплюмбат (II)-ионов [РbI4] 2- :

Осадок иодида свинца растворяется при нагревании в воде, в растворе уксусной кислоты. При охлаждении раствора из него снова выпадают красивые золотисто-желтые кристаллы иодида свинца (реакция «золотого дождя»).

Методика. В пробирку вносят 3-5 капель раствора нитрата свинца Рb(NO3)2, прибавляют 3 капли раствора иодида калия KI. Выпадает желтый осадок иодида свинца. К смеси прибавляют несколько капель воды, подкисленной уксусной кислотой, и нагревают до полного растворения осадка. При медленном охлаждении пробирки выпадают красивые блестящие золотисто-желтые чешуйчатые кристаллы иодида свинца.

3. Реакция с K2CrO4 (хромат-ионами)

Катионы свинца образуют с K2CrO4 (хромат-ионами) в уксуснокислой среде желтый кристаллический осадок хромата свинца РbСrО4

Осадок хромата свинца не растворяется в уксусной и разбавленной азотной кислотах, в водном аммиаке, но растворяется в щелочах с образованием комплексов [Рb(ОН)4] 2- :

Методика. В пробирку вносят 2-3 капли раствора Рb(СН3СОО)2 , 2-3 капли раствора ацетата натрия и 3 капли раствора хромата калия К2СrО4. Выпадает желтый кристаллический осадок хромата свинца.

4. Реакция с Na2SO4 (сульфат-ионами)

Катионы Рb 2+ при взаимодействии в растворе с сульфат-ионами SO4 2- образуют белый осадок сульфата свинца РbSO4:

Методика. В пробирку вносят 5 капель раствора нитрата свинца, прибавляют столько же капель раствора сульфата натрия. Выпадает белый осадок сульфата свинца.

Реакция сo щелочами

Соединения свинца при взаимодействии с щелочами (недостаток) выделяют белый осадок гидроксида свинца Pb(ОН)2, растворимый в избытке щелочи.

Осадок Pb(ОН)2 растворяется в кислотах.

Методика. В пробиркe вносят 2-3 капли раствора соли свинца и прибавляют по каплям раствор NaОН. Выпадает белый осадок Pb(ОН)2, который растворяется в избытке гидроксида натрия и кислотах.

3. Аналитические реакции катиона алюминия Аl 3+

Реакция со щелочами

Катионы Аl 3+ при реакциях со щелочами в растворах дают белый осадок гидроксида алюминия А1(ОН)3, который растворяется в избытке щелочи с образованием гидроксокомплекса [Al(OH)6] 3- :

Осадок А1(ОН)3 растворяется в кислотах, но не растворяется в аммиаке.

Методика. В пробирку вносят 3-5 капель раствора хлорида алюминия АlСl3 и прибавляют по каплям раствор NаОН. Выпадает белый oсадок гидроксида алюминия. Осадок взболтать и разлить на две пробирки. В одну продолжают прибавление по каплям раствора NаОН, а в другую пробирку добавляют НС1. Осадок растворяется.

Реакция с аммиаком

Катионы Аl 3+ образуют с аммиаком, как и сo щелочами, белый аморфный осадок гидроксида алюминия:

B избытке раствора аммиака осадок не растворяется.

Методика — аналогична предыдущей.

Реакция с ализарином

Ализарин — 1,2-диоксиантрахинон, а также некоторые его производные при реакциях с катионами Аl 3+ в аммиачной
среде образуют малорастворимые комплексные соединения ярко-красного цвета, называемые «алюминиевыми лаками». Реакцию выполняют капельным методом на фильтровальной бумаге.

Методика. На лист фильтровальной бумаги наносят 1-2 капли раствора соли алюминия. Бумагу держат 1-2 минуты в парах аммиака – над склянкой с концентрированным раствором аммиака. Пары аммиака, соприкасаясь с влажным пятном, образуют на бумаге гидроксид алюминия. На пятно наносят каплю раствора ализарина и снова держат бумагу в
парах аммиака. Пятно, вначале, окрашивается в фиолетовый цвет (цвет фона ализарина). Бумагу подсушивают, наносят на нее 1-2 капли раствора уксусной кислоты и снова высушивают. Пятно становится розово-красным.

Результаты выполнения лабораторных работ по изучению характерных реакций ионов Р — элементов заносятся в протокол, который оформляется на двух страницах рабочей тетради по форме:

Источник

Все соединения ртути (II) сильно ядовиты, поэтому при работе с ними следует принимать меры предосторожности!

Катионы шестой аналитической группы катионов

1. Общая характеристика группы.

2. Частные реакции катионов второй аналитической группы.

3) Реакции на катион ртути (II).

К шестой аналитической группе катионов относятся катионы Cu 2+ , Hg 2+ , Co 2+ , Ni 2+ . Cd 2+ Хлориды, сульфаты и нитраты этих катионов хорошо растворимы в воде. Растворы солей меди (II) окрашены в голубой цвет, кобальта (II) — в розовый, а никеля (II) — в зеленый.

Гидроксиды катионов этой группы являются труднорастворимыми слабыми электролитами, гидроксиды Сu(ОН)2 и Hg(OH)2 неустойчивы и разлагаются на соответствующий оксид и воду, Сu(ОН)2 при нагревании, a Hg(OH)2 при обычной температуре.

Соли катионов шестой аналитической группы подвергаются гидролизу в водных растворах.

Для катионов этой группы характерны реакции комплексообразования. Растворы аммиака осаждают Сu, Hg, Со, Ni, Cd в виде гидрооксидов. При избытке аммиака они растворяются, образуют комплексные соединения:

Медь, ртуть и кобальт имеют переменную степень окисления, поэтому для них характерны окислительно-восстановительные реакции. Некоторые из этих реакций используются для открытия отдельных ионов. Например, ион Hg 2+ открывают восстановлением его до Hg(I) и затем до свободной ртути действием SnС12.

Медь принадлежит к числу микроэлементов, очень малые количества которых необходимы для нормальной жизнедеятельности живых организмов. Удобрения, содержащие медь, способствуют росту растений на некоторых малоплодородных почвах, повышают их устойчивость против засухи и холода. В человеческом организме медь обнаружена в составе эритроцитов. Она оказывает заметное влияние на повышение сопротивляемости организма к вредному воздействию некоторых факторов внешней среды.

Реакции катиона ртути (II) Hg 2+

1. Гидроксиды щелочных металлов NaOH и КОН осаждают из растворов солей ртути (II) желтый осадок оксида ртути:

Hg 2+ + 2ОН — → HgO↓+ Н2О.

Осадок легко растворим в кислотах. Реакция является фармакопейной.

2. Иодид калия KI с солями ртути (II) дает красный осадок иодида ртути (II):

Осадок растворяется в избытке реактива с образованием бесцветной комплексной соли:

Реакция часто используется для обнаружения ионов Hg 2+ , хотя ионы Сu 2+ мешают определению. Реакция является фармакопейной.

3. Хлорид олова (II) SnCl2 восстанавливает соли ртути (II) до нерастворимого хлорида ртути (I) белого цвета:

2Hg 2+ + Sn 2+ + 2Сl — → Hg2Cl2↓ + Sn 4+

Если реактив брать в избытке, то происходит дальнейшее восстановление ртути до металлической:

Этой реакцией пользуются для обнаружения иона ртути (II).

4. Реакция с сульфид — ионом. Реакция является фармакопейной. Катионы Hg 2+ осаждаются из водных растворов сульфид – ионом в виде черно- коричневого осадка. Реакция протекает в несколько стадий. Вначале образуется белый осадок, постепенно изменяющий окраску через желто- красную и бурую на черно- коричневую при избытке сульфид – ионов.

Сульфид ртути (II) не растворяется в разбавленной азотной кислоте, но растворим в царской водке.

Реакции катиона меди (II) Сu 2+

1. Гидроксиды щелочных металлов NaOH и КОН из растворов солей меди (II) выделяют на холоду голубой осадок гидроксида меди (II):

При кипячении смеси раствора с осадком гидроксид меди (II) разлагается, теряя воду:

Осадок растворим в концентрированном растворе аммиака:

2. Водный раствор аммиака, взятый в избытке, образует с солями меди (II) комплексное соединение меди (II) ярко — синего цвета:

Реакция является наиболее характерной для иона Сu 2+ и чаще всего применяется для его обнаружения. Проведению реакции мешают ионы Ni 2+ и Со 2+ .

Схема анализа катионов I-VI аналитических групп представлена на рисунке 6

Рис. 6. Схема анализа катионов I-VI аналитических групп

3. Гексацианоферрат (II) калия. K4Fe(CN)6] осаждает из нейтральных или слабокислых растворов солей меди(II) красно – бурый осадок

осадок не растворяется в разбавленных кислотах, но растворяется в 25% растворе аммиака.

4. Иодид калия или натрия окисляется солями меди (II) до свободного иода:

5. Реакция восстановления меди (II) до металлической меди. Реакция фармакопейная. Металлы, расположенные в ряду напряжений металлов леве меди, восстанавливают катион Cu 2+ до металлической меди. Чаще для этой цели используют металлический алюминий, цинк, железо.

Cu 2+ + Zn → Cu + Zn 2+

Cu 2+ + Fe → Cu + Fe 2+

Схема систематического анализа катионов всех шести аналитических групп представлена на рисунке 6.

Тема: «Анионы»

1. Общая характеристика анионов.

Анионы образуются в основном p-элементами и некоторыми d- элементами (Cr, Mn). Высокой способностью к образованию анионов обладают p-элементы, расположенные в верхнем правом углу Периодической системы Д. И. Менделеева. Они имеют переменную степень окисления и способны к образованию кислот, причем сила кислот возрастает с увеличением степени окисления.

Классификация анионов основывается на различной растворимости солей бария и серебра соответствующих кислот, классификация анионов представлена в таблице 2

Первая группа анионов: фосфат-ион РО4 3 — сульфат-ион SO4 2- , сульфит-ион SO3 2 — , карбонат-ион СО3 2- , тиосульфат-ион S2O3 2 — , метаборат-ион ВО2 — (или тетраборат-ион В4О7 2 — ) и оксалат-ион С2О4 2 — . Перечисленные ионы образуют с ионами бария Ва 2+ труднорастворимые в воде соли. Групповым реагентом является ВаСl2 в нейтральной или слабощелочной среде.

Вторая группа анионов: хлорид-ион С1 — , бромид-ион Вг — , иодид-ион I — , сульфид-ион S 2 — . Анионы второй группы образуют с ионами Ag + труднорастворимые в воде и нерастворимые в разбавленной азотной кислоте соли. Групповым реагентом является AgNO3 в присутствии разбавленной азотной кислоты.

Третья группа анионов: нитрат-ион NO3 — , нитрит-ион NO2 — и ацетат-ион СН3СОО — . Серебряные и бариевые соли этих анионов хорошо растворимы в воде. Группового реагента нет.

Источник

Реакции ионов ртути (II)

Реакция с водным раствором аммиака.

Раствор аммиака образует с солью ртути белый осадок комплексной соли хлорида амминртути (II), растворимый в кислотах и избытке реагента:

Реакция с гидроксидом натрия.

Едкая щелочь образует гидроксид ртути, который неустойчив и распадается на оксид ртути желтого цвета и воду:

Реакция с сероводородом.

Сероводород осаждает из раствора солей ртути черный сульфид ртути:

Осадок не растворяется в HCl и H2SO4, но растворим в царской водке:

4. Реакция с иодидом калия.

Иодид калия образует красный осадок иодида ртути, который растворяется в избытке реагента с образованием комплексной соли K2[HgI4]:

Щелочной раствор этого соединения называется реактивом Несслера. Проведению реакции мешают ионы серебра и ртути, которые необходимо удалить, осадив их смесью хлорида и сульфата калия.

5. Реакция с хлоридом олова (II).

Свежеприготовленный хлорид олова (II) восстанавливает хлорид ртути (П) до хлорида ртути (I) Hg2Cl2 (каломель). При дальнейшем прибавлении реагента каломель восстанавливается до металлической ртути черного цвета:

Выполнение реакции: к 3–4 каплям исследуемого раствора прибавляют по каплям раствор SnCl2. Вначале образуется белый осадок, который при дальнейшем прибавлении SnCl2 темнеет, переходя в черный.

Реакция с металлической медью.

Медь вытесняет ртуть из растворов ее солей в виде блестящего металла:

0,5 мл исследуемого раствора наносят на очищенную медную пластинку и оставляют на несколько минут, а затем протирают образовавшееся на ней пятно фильтровальной бумагой. В присутствии ртути поверхность меди становится серебристо–белой вследствие образования амальгамы меди. Проведению реакции мешают ионы серебра и ртути (I). Их предварительно осаждают с помощью НCl.

Реакция с дитизоном

Дитизон образует с ионами ртути (II) в кислых растворах соединение розового цвета, извлекающееся в хлороформ.

Выполнение реакции: к 1 капле исследуемого раствора в пробирке с со шлифом добавляют 1 каплю 2 М раствора соляной кислоты и 2–3 капли 0,001 %-го раствора дитизона в хлороформе закрывают пробкой и встряхивают пробирку. В присутствии ртути (II) окраска меняется с зеленой на розовую.

Реакция с тиосульфатом натрия.

Выполнение реакции: на фильтровальную бумажку наносят одну каплю раствора тиосульфата натрия, затем одну каплю раствора соли ртути (II). Наблюдают появление желто-оранжевого окрашивания, переходящее в черное при избытке реактива:

Проведению реакции мешают только ионы ртути (I), которые с реактивом образуют черный осадок. Их предварительно можно удалить с помощью НCl.

Ход анализа катионов V аналитической группы

В коническую пробирку, содержащую 15–20 капель исследуемого раствора, прибавляют 6–8 капель Na2S2O3, 3–4 капли 1 М раствора Н2SO4, нагревают на водяной бане при перемешивании и центрифугируют.

Осадок – HgS, Cu2S, S.

Осадок растворяют в 6–8 каплях 3 М р–а HNO3 при t° на водяной бане и перемешивании. Центрифугируют.

К раствору добавляют избыток 2 М раствора NaOH. Центрифугируют.

Растворяют в 2–4 каплях царской водки, разбавляют в 2 раза водой.

Открывают Hg 2+ реакцией с SnCl2.

Прибавляют избыток раствора NH3, появление синей окраски раствора свидетельствует о наличии Сu 2+ .

Осадок раст-ют в 2 М р-ре HCl. Открывают Со 2+ с NH4NСS, Ni 2+ с диметилглиоксимом. Для определения Cd 2+ к порции р-ра добавляют р-р Na2S, нагревают на водяной бане 10 мин. К взвеси приливают по каплям конц. HCl до нейтрализации и равный объем 2 М р-ра HCl, нагревают на водяной бане, центрифугируют. К р-ру по каплям добавляют р–р Na2S, образование желтого осадка свидетельствует о наличии Cd 2+ .

Катионы V группы можно также обнаружить дробными реакциями:

а) Cu 2+ определяют с концентрированным раствором аммиака, глицином в нейтральной среде, глицерином в щелочной среде;

б) Cd 2+ – по реакции с диантипирилметаном и бромид ионами;

в) Co 2+ – с NH4NСS и антипирином;

г) Ni 2+ – с диметилглиоксимом (капельный метод);

д) Hg 2+ – с тиосульфатом натрия, SnCl2 или медью.

1. Какие катионы входят в состав V группы? Что является групповым реактивом?

2. Назовите известные вам комплексные соединения меди и кадмия.

3. Какую окраску в растворах имеют аммиачные комплексы катионов пятой группы?

4. Что образуется при действии избытка раствора иодида калия на соли Hg 2+ .

5. Расскажите об условиях обнаружения ионов никеля с диметилглиоксимом.

6. Расскажите об условиях обнаружения ионов кобальта тиоцианат-ионами в присутствии антипирина.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник