Реакция взаимодействия серной кислоты с оловом

Олово: степени окисления и реакции с ним

Химические свойства олова

Олово – это легкий металл с атомным номером 50, который находится в 14-й группе периодической системы элементов. Этот элемент был известен еще в древности и считался одним из самых редких и дорогих металлов, поэтому изделия из олова могли позволить себе самые богатые жители Римской Империи и Древней Греции. Из олова изготавливали специальную бронзу, которой пользовались еще в третьем тысячелетии до нашей эры. Тогда бронза была самым прочным и популярным сплавом, а олово служило одной из примесей и использовалось более двух тысяч лет.

На латыни этот металл называли словом «stan­num», что означает стойкость и прочность, однако таким названием ранее обозначался сплав свинца и серебра. Только в IV веке этим словом начали называть само олово. Само же название «олово» имеет множество версий происхождения. В Древнем Риме сосуды для вина делались из свинца. Можно предположить, что оловом называли материал свинец, из которого изготавливали сосуды для хранения напитка оловина, употребляемого древними славянами.

В природе этот металл встречается редко, по распространенности в земной коре олово занимает всего лишь 47-е место и добывается из касситерита, так называемого оловянного камня, который содержит около 80 процентов этого металла.

Применение в промышленности

Так как олово является нетоксичным и весьма прочным металлом, он применяется в сплавах с другими металлами. По большей части его используют для изготовления белой жести, которая применяется в производстве банок для консервов, припоев в электронике, а также для изготовления бронзы.

Физические свойства олова

Этот элемент представляет собой металл белого цвета с серебристым отблеском.

Если нагреть олово, можно услышать потрескивание. Этот звук обусловлен трением кристалликов друг о друга. Также характерный хруст появится, если кусок олова просто согнуть.

Олово весьма пластично и ковко. В классических условиях этот элемент существует в виде «белого олова», которое может модифицироваться в зависимости от температуры. Например, на морозе белое олово превратится в серое и будет иметь структуру, схожую со структурой алмаза. Кстати, серое олово очень хрупкое и буквально на глазах рассыпается в порошок. В связи с этим в истории есть терминология «оловянная чума».

Раньше люди не знали о таком свойстве олова, поэтому из него изготавливались пуговицы и кружки для солдат, а также прочие полезные вещи, которые после недолгого времени на морозе превращались в порошок. Некоторые историки считают, что именно из-за этого свойства олова снизилась боеспособность армии Наполеона.

Получение олова

Основным способом получения олова является восстановление металла из руды, содержащей оксид олова(IV) с помощью угля, алюминия или цинка.

Особо чистое олово получают электрохимическим рафинированием или методом зонной плавки.

Химические свойства олова

При комнатной температуре олово довольно устойчиво к воздействию воздуха или воды. Это объясняется тем, что на поверхности металла возникает тонкая оксидная пленка.

На воздухе олово начинает окисляться только при температуре свыше 150 °С:

Если олово нагреть, этот элемент будет реагировать с большинством неметаллов, образуя соединения со степенью окисления +4 (она более характерна для этого элемента):

Взаимодействие олова и концентрированной соляной кислоты протекает довольно медленно:

Sn + 4HCl → H₂[SnCl₄] + H₂

С концентрированной серной кислотой олово реагирует очень медленно, тогда как с разбавленной в реакцию не вступает вообще.

Очень интересна реакция олова с азотной кислотой, которая зависит от концентрации раствора. Реакция протекает с образованием оловянной кислоты, H₂S­nO₃, которая представляет собой белый аморфный порошок:

3Sn + 4H­NO₃ + nH₂O = 3H₂S­nO₃·nH₂O + 4NO

Если же олово смешать с разбавленной азотной кислотой, этот элемент будет проявлять металлические свойства с образованием нитрата олова:

4Sn + 10H­NO₃ = 4Sn(NO₃)₂ + NH₄NO₃ + 3H₂O

Нагретое олово нагреть может реагировать со щелочами с выделением водорода:

Sn + 2KOH + 4H₂O = K₂[Sn(OH)₆] + 2H₂

Здесь вы найдете безопасные и очень красивые эксперименты с оловом.

Степени окисления олова

Читайте также:  Припой твердый проволока олово пос 61

В простом состоянии степень окисления олова равняется нулю. Также Sn может иметь степень окисления +2: оксид олова(II) SnO, хлорид олова(II) SnCl₂, гидроксид олова(II) Sn(OH)₂. Степень окисления +4 наиболее характерна для оксида олова(IV) SnO₂, галогенидах(IV), например хлорид SnCl₄, сульфид олова(IV) SnS₂, нитрид олова(IV) Sn₃N₄.

Источник

Свойства элементов IV А группы (олово, свинец)

Цель работы: изучение химических свойств элементов IV А .группы.

Опыт 1. Взаимодействие олова с кислотами

А. Действие на олово разбавленных кислот. В три пробирки кладем по маленькому кусочку металлического олова. В каждую из пробирок добавляем раздельно по 4-6 капель 2 н. растворов кислот: хлороводородной, серной, азотной. Нагреваем пробирки на водяной бане. Наблюдаем выделение газа. С разбавленной серной и соляной кислотами выделяется водород.

Б. Действие на олово концентрированных кислот. Раствор разбавленных кислот осторожно сливаем с олова, промываем его водой и в каждую пробирку добавляем по 4-5 капель концентрированных кислот: в первую соляной (d = 1,19 г/см 3 ), во вторую — серной (d = 1,84 г/см 3 ), в третью — азотной (d = 1,4 г/см 3 ). Осторожно нагреваем пробирки на водяной бане. В первой пробирке выделяется водород, во второй- сероводород.

Опыт 2. Гидроксид олова (II) и его свойства. В две пробирки вносим по 2-4 капли раствора хлорида олова (II). В каждую пробирку добавляем по 2-5 капель 2 н. раствора едкого натра до образования осадка. К полученному гидроксиду олова добавляем: в первую пробирку 3-5 капель 2 н. раствора соляной кислоты, во вторую — столько же 2 н. раствора едкого натра. Растворы размешиваем стеклянной палочкой или осторожно встряхиваем пробирки в обоих случаях до растворения осадков.

1) SnCl2 + 2NaOH = Sn(OH)2 + 2NaCl

Sn + 2OH = Sn(OH)2 (белый)

Опыт 3. Гидролиз хлорида олова (II). Наливаем в пробирку 4 капли воды и опускаем в нее 2-3 кристаллика хлорида олова (II). Размешиваем, содержимое стеклянной палочкой до полного растворения кристаллов. К полученному прозрачному раствору добавляем еще 5-6 капель воды. Прибавлением кислоты к раствору можно уменьшить гидролиз хлорида олова.

Sn + 2Cl + H2O = SnOHCl + H + Cl (белый)

Опыт 4. Восстановительные свойства соединений олова (II).

А. Восстановление перманганата калия. В пробирку с раствором перманганата калия добавляем 4-5 капель 2 н. раствора соляной кислоты и свежий раствор соли олова до обесцвечивания смеси. Олово переходит в степень окисления +4.

Б. Восстановление дихромата калия. К раствору хлорида олова (II) добавляем 5-6 капель соляной кислоты. К подкисленному раствору по каплям прибавляем дихромат калия до появления зеленой окраски вследствие восстановления дихромата до Сr 3+ .

В. Восстановление хлорида железа (III). В две пробирки вносим по 2 капли раствора хлорида железа (III) и гексацианоферрата (III) калия K3[Fe(CN)6] (реактив на ион Fe 2+ ). В обе пробирки добавляем воды. Одну пробирку сохранить для сравнения, в другую добавляем 2-3 капли раствора хлорида олова (II) и наблюдаем в ней появление синей окраски вследствие образования Fe3[Fe(CN)6]2.

Sn + 2Fe + 6Cl = 2Fe + SnCl6

Г. Восстановление ртути из ее нитрата. К 2-3 каплям раствора хлорида олова (II) прибавляем 1 каплю нитрата ртути (II). Наблюдаем образование темного осадка металлической ртути.

Опыт 5. Окисление олова (II) до олова (IV). К 2-3 каплям раствора хлорида олова (II) прибавляем по каплям бромную воду. Наблюдаем обесцвечивание бромной воды.

2 SnCl2 + 2 Br2 = SnBr4 + SnCl4 (слабо-желтая окраска раствора)

Опыт 6. Окислительные свойства олова (IV). В полученный в опыте 5 раствор опускаем железный гвоздик с зачищенной поверхностью.

SnBr4 + Fe = FeBr2 + SnBr2 (обесцвечивание раствора)

Опыт 7. Гидроксид олова (IV) и его свойства. В две пробирки вносиим по 2-4 капли раствора хлорида олова (IV) и по 2-4 капли 2 н. раствора едкого натра (до выпадения осадка). К полученному осадку добавляем в одну пробирку несколько капель соляной кислоты, в другую — несколько капель едкого натра.

1) SnCl4 + 4 NaOH = Sn(OH)4 + 4NaCl

Sn + 4 OH = Sn(OH)4 (белый)

Опыт 8. Сульфид олова (IV) и его свойства

А. Получение сульфидов. В 2 пробирки наливаем по 3-4 капли хлорида олова (II) и хлорида олова (IV). К каждой пробирке добавляем подкисленный раствор сульфида натрия.

Б. Образование тиосолей олова. К осадку SnS2 добавляем сульфид аммония. Наблюдать растворение SnS2 из-за образования комплекса [SnS3] 2? .

Читайте также:  Где найти хлорид олова

В. Разрушение тиостанната аммония в кислой среде. К раствору тиосоли олова, полученному в предыдущем опыте, добавляем 2-3 капли концентрированной соляной кислоты. В осадок выпал сульфид свинца, и выделился сероводород. олово свинец свойство гидролиз

Опыт 1. Переходы между степенями окисления.

А. К 2-3 каплям раствора нитрата свинца (II) прибавляем по каплям бромную воду. Наблюдаем обесцвечивание бромной воды.

Б. В полученный в опыте А раствор опускаем железный гвоздик с зачищенной поверхностью.

В. В раствор нитрата свинца (II) помещаем кусочек цинка.

Опыт 2. Взаимодействие свинца с кислотами.

А. Действие на свинец разбавленных кислот. В три пробирки помещаем по маленькому кусочку свинца и приливаем по 5-8 капель 2 н. растворов кислот: в первую — соляной, во вторую — серной, в третью — азотной. Нагреваем пробирки маленьким пламенем горелки. По охлаждении растворов в каждую пробирку вносим по 2-3 капли раствора иодида калия.

Pb + 2K + PbI2 (желтый)

Б. Действие на свинец концентрированных кислот. Осторожно выливаем раствор кислот из всех пробирок, ополаскиваем свинец водой и действуем на него концентрированными кислотами: соляной (d = 1,19 г/см 3 ), серной (d = 1,84 г/см 3 ) и азотной (d = 1,4 г/см 3 ), добавляя их раздельно в каждую пробирку по 3?5 капель. Осторожно нагреваем пробирки на водяной бане. Наблюдается выделение газа.

Опыт 3. Гидроксид свинца (II) и его свойства. В две пробирки помещаем по 2-3 капли раствора соли свинца и добавляем в каждую по нескольку капель 2 н. раствора едкого натра до выпадения осадка. Исследуем свойства полученного гидроксида свинца, добавив в одну пробирку несколько капель 2 н. раствора азотной кислоты, в другую — 2 н. раствора едкого натра. Размешиваем растворы стеклянной палочкой до растворения осадков в обоих случаях.

2) Pb(OH)2 + 4 NaOH = Na4[Pb(OH)4] (растворение осадка)

Опыт 4. Получение некоторых малорастворимых солей свинца (II). В четыре пробирки раздельно вносим по 2-4 капли 2 н. растворов серной и соляной кислот, раствора иодида калия и сероводородной воды. В каждую пробирку добавляем по 2-3 капли раствора соли свинца. Во все пробирки добавляем по 2-3 капли воды и нагреваем на водяной бане. Опускаем пробирки с раствором в стакан с холодной водой и после охлаждения наблюдаем снова образование осадков хлорида и иодида свинца.

Pb + 2Cl = PbCl2 (белый)

Pb + 2I = PbI2 (желтый)

Pb + S = PbS (черный)

Опыт 5. Гидролиз солей свинца (II). Опускаем в пробирку 2-3 кристаллика нитрата свинца (II) и добавляем 4-5 капель воды. Размешиваем содержимое стеклянной палочкой до полного растворения кристаллов и опускаем в раствор синюю лакмусовую бумажку. В растворе нитрата свинца кислая среда. Нагреваем слегка раствор и, добавив к нему такой же объем раствора карбоната натрия, снова нагреваем. Наблюдаем выпадение осадка соли (РbOH)2СО3. В азотной кислоте можно растворить полученную соль.

Опыт 6. Окисление соединений свинца (II) пероксидом водорода. К раствору соли свинца (II) (2-3 капли) добавляем 2-3 капли 40 %-ного раствора едкого натра и 4-6 капель пероксида водорода. Полученный раствор Na4[Pb(OH)6] размешиваем стеклянной палочкой и нагреваем на водяной бане или на маленьком пламени горелки. Наблюдаем образование коричневого осадка диоксида свинца. Даем раствору отстояться, удаляем пипеткой или кусочком фильтровальной бумажки избыток жидкости и промываем осадок 2-3 каплями воды, перемешивая палочкой.

Опыт 7. Амфотерные свойства диоксида свинца. Помещаем в пробирку 2-3 микрошпателя диоксида свинца и добавляем к нему несколько капель концентрированной соляной кислоты. Нагреваем слегка пробирку на водяной бане. Наблюдаем появление желтой окраски, характерной для тетрахлорида свинца.

Опыт 8. Окислительные свойства диоксида свинца.

A. Окисление сульфата хрома (III). В пробирку с диоксидом свинца добавляем 10 капель 40 %-ного раствора едкого натра. Пробирку нагреваем на водяной бане или закрепляем в штативе и осторожно нагреваем на горелке. В горячий раствор вносим каплю раствора сульфата хрома и снова нагреваем пробирку.

Б. Окисление иодида калия. В пробирку вносим один микрошпатель порошка диоксида свинца, 3-5 капель 2 н. раствора серной кислоты и 5-6 капель раствора иодида калия. Нагреваем пробирку маленьким пламенем горелки или на водяной бане. Цвет раствора стал коричневым. Переносим стеклянной палочкой каплю этого раствора в пробирку с 8-10 каплями раствора крахмала. Отмечаем появление синей окраски.

Читайте также:  Юпитера с металлом олово

В. Окисление сульфата марганца (II). В пробирку помещаем очень немного (на кончике микрошпателя) диоксида свинца, добавляем 6-8 капель 2 н. раствора азотной кислоты и одну каплю раствора соли марганца (II). Содержимое пробирки осторожно кипятим. Окраска полученного раствора стала черной.

Вывод: В ходе данной лабораторной работы на практике были рассмотрены свойства олова и свинца. Были записаны уравнения химических реакций.

Источник

Реакция взаимодействия серной кислоты с оловом

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ

Чаще всего в химической практике используются такие сильные кислоты как серная H 2 SO 4 , соляная HCl и азотная HNO 3 . Далее рассмотрим отношение различных металлов к перечисленным кислотам.

Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl . Ввиду невысокой его растворимости в воде, концентрация соляной кислоты при обычных условиях не превышает 38%. Поэтому независимо от концентрации соляной кислоты процесс диссоциации ее молекул в водном растворе протекает активно:

HCl H + + Cl —

Образующиеся в этом процессе ионы водорода H + выполняют роль окислителя, окисляя металлы, расположенные в ряду активности левее водорода. Взаимодействие протекает по схеме:

Me + HCl соль + H 2

При этом соль представляет собой хлорид металла ( NiCl 2 , CaCl 2 , AlCl 3 ), в котором число хлорид-ионов соответствует степени окисления металла.

Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления:

2 Al + 6 HCl → 2 AlCl 3 + 3 H 2

2│ Al 0 – 3 e — → Al 3+ — окисление

3│2 H + + 2 e — → H 2 – восстановление

Соляная кислота пассивирует свинец ( Pb ). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца ( II ), который защищает металл от дальнейшего воздействия кислоты:

В промышленности получают серную кислоту очень высокой концентрации (до 98%). Следует учитывать различие окислительных свойств разбавленного раствора и концентрированной серной кислоты по отношению к металлам.

Разбавленная серная кислота

В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:

H2SO4 H + + HSO4

HSO4H + + SO4 2-

Образующиеся ионы Н + выполняют функцию окислителя.

Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).

Химическая реакция протекает по схеме:

1│2Al 0 – 6e — → 2Al 3+ — окисление

3│2 H + + 2 e — → H 2 – восстановление

Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления:

Свинец ( Pb ) не растворяется в серной кислоте (если ее концентрация ниже 80%) , так как образующаяся соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Концентрированная серная кислота

В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера, находящаяся в высшей степени окисления ( S +6 ). Концентрированная H 2 SO 4 окисляет все металлы, стандартный электродный потенциал которых меньше потенциала окислителя – сульфат-иона SO 4 2- (0,36 В). В связи с этим, с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.

Процесс взаимодействия металлов с концентрированной серной кислотой в большинстве случаев протекает по схеме:

Me + H 2 SO 4 (конц.) соль + вода + продукт восстановления H 2 SO 4

Продуктами восстановления серной кислоты могут быть следующие соединения серы:

Практика показала, что при взаимодействии металла с концентрированной серной кислотой выделяется смесь продуктов восстановления, состоящая из H 2 S , S и SO 2. Однако, один из этих продуктов образуется в преобладающем количестве. Природа основного продукта определяется активностью металла: чем выше активность, тем глубже процесс восстановления серы в серной кислоте.

Взаимодействие металлов различной активности с концентрированной серной кислотой можно представить схемой:

Алюминий ( Al ) и железо ( Fe ) не реагируют с холодной концентрированной H 2 SO 4 , покрываясь плотными оксидными пленками, однако при нагревании реакция протекает.

Концентрированная серная кислота является сильным окислителем, поэтому при взаимодействии с ней металлов, обладающих переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты:

Источник