Серое олово что это такое

Белое и серое олово

Олово (Sn) является элементом 14-й группы периодической таблицы, располагается в пятом периоде, с порядковым номером 50. Входит в группу лёгких металлов. Олово обладает полиморфизмом кристаллов, т.е. имеет две аллотропические модификации: белое и серое олово.

Серое олово

Серое олово является α-фазой, наблюдается при температуре ниже 13,2 °C. Приведём некоторые физические свойства α-фазы:

  • обладает кубической решёткой типа алмаза (a=0,6491 нм);
  • узкозонный полупроводник в виде порошка серебристого цвета. Ниже -269,43 °C α-Sn наблюдается сверхпроводимость;
  • плотность составляет 5,85 г/см3;
  • выше 13,2 °C осуществляется переход в белое олово.

Белое олово

Белое олово является β-фазой, наблюдается при температуре выше 13,2 °C. Приведём некоторые физические свойства β-Sn:

  • обладает тетрагональной кристаллической решёткой (a=0,5831 нм, c=0,3181 нм);
  • мягкий, легкоплавкий, блестящий и пластичный металл, обладающий серебристо-белым цветом;
  • плотность составляет 7,29 г/см3;
  • ниже 13,2 °C осуществляется переход в серое олово.

Оловянная чума

При понижении температуры ниже 13,2 °C наблюдается фазовый переход из белого олова в серое, при этом наблюдается уменьшение плотности примерно на 20% и поэтому металл рассыпается в серебристый порошок. Этот процесс называется «оловянной чумой». Это название пришло из старины, когда во время сильных холодов оловянные пряжки, кружки, пуговицы и ложки рассыпались.

Максимальная скорость этого превращения достигается при -39 °C и составляет около 1 мм в час. Однако, наличие примесей может снизить скорость превращения, а в некоторых случаях даже предотвратить переход из β-фазы в α-фазу (например, добавка висмута).

Кроме того, белое олово превращается в серое под действием ионизирующего излучения.

Обратное превращение (из α-фазы в β-фазу) при нормальных условиях также не быстрое дело. Однако, этот процесс можно ускорить: для этого нужно поместить порошок в горячую воду, тогда трансформация займёт всего несколько секунд. Различные добавки также могут привести к большей устойчивости по отношению к переходу.

Достаточное увеличение давления провоцирует переход из серого в белое олово. Поэтому, если спрессовать α-фазу под давлением 3-5 кбар, то осуществится переход в β-фазу.

Источник

Что такое «Оловянная чума», и Действительно ли она погубила великую армию Наполеона

Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.

Красивые изделия из чистого олова, которые очень ценились в старину, были подвержены странному «недугу». Стоило такую чашу или украшение подержать на морозе, как на блестящей поверхности металла появлялись серые пятна. Они постепенно увеличивались, олово в этих местах как будто исчезало. Причем людям казалось, что, прикасаясь к «больному» предмету, могли «заразиться» и здоровые, поэтому странное явление, описанное алхимиками, назвали «оловянной чумой». Причину ученые смогли найти только в 1899 году, когда с помощью рентгеновского анализа исследовали кристаллическую структура капризного металла. Оказалось, что олово имеет несколько аллотропных модификаций. Самая распространенная — белое олово, — устойчиво выше +13 градусов Цельсия, а при охлаждении начинается постепенный переход в серое олово, которое просто рассыпается в порошок. При минус 33 градусах такое превращение происходит максимально быстро.

Однако в средневековье объяснения этому явлению люди не могли найти, да и встречались с ним только жители северных стран, поэтому знали о загадочной «болезни» тогда не все. Только этим можно объяснить то, что на протяжении многих сотен лет олово продолжали массово использовать, хотя это и приводило порой к неприятным ситуациям и даже трагедиям. Так, например, буквально «обратился в прах» огромный груз оловянных слитков, отправленный из Голландии в Россию в конце XIX века. По этому поводу даже проводили полицейское расследование, ведь огромный железнодорожный состав, груженый достаточно дорогим металлом стоил немало, а при вскрытии вагонов там нашли лишь серую пыль.

Подобные казусы случались еще даже в начале XX веке. На военных складах Санкт-Петербурга однажды разгорелся настоящий скандал, когда выяснилось, что со всех комплектов обмундирования пропали оловянные пуговицы. От суда складских работников спасло лишь то, что к тому времени достижения науки уже объяснили эту «чуму». Однако одна из самых известных легенд, связанных с необычным металлом, гласит, что именно оловянные пуговицы на мундирах стали причиной поражения Наполеона. Столкнувшись впервые с русскими морозами, французские войска, якобы, потеряли возможность воевать, так как стрелять, когда у тебя сваливаются штаны, практически невозможно. Ученые сегодня не склонны подтверждать этот известный исторический анекдот, однако то, что «оловянная чума» приносила много бед на протяжении столетий – это неоспоримый факт.

Считается, что именно эта напасть погубила в начале XX века британскую экспедицию «Терра Нова» под руководством Роберта Скотта. В 1911 году полярники продвигались по антарктическим льдам, пытаясь добраться до Южного полюса. Поход был долгим, и по пути исследователи оставляли запасы с продовольствием и топливом, чтобы воспользоваться ими на обратном пути. На самом деле, эту экспедицию историки называют сегодня «полярной гонкой» — британцы во главе со Скоттом очень старались обойти конкурирующую команду Руаля Амундсена, ведь речь шла о том, чтобы честь этого свершения доставить Британской империи.

В 1912 году мужественные полярники покорили свою цель, но оказались не первыми – норвежцы обогнали их на месяц. Экспедиция начала долгий путь домой, но, добираясь до «схронов», измученные люди все чаще обнаруживали канистры с топливом пустыми. Наиболее правдоподобной причиной этого несчастья современные историки считают «оловянную чуму». Пайку швов в то время все еще делали из этого ненадежного металла, и, скорее всего, в условиях полярных морозов канистры дали течь. Кстати, команда Амундсена тоже страдала от этого явления, но их экспедиция была лучше организована, и потеря некоторой части керосина не стала критичной. А вот для англичан все закончилось плохо. Нехватка топлива стала для них настоящей катастрофой, и в марте 1912 года мужественные полярники погибли, не сумев преодолеть обратный путь от покоренного ими полюса.

Читайте также:  Хлорид олова азотная кислота

После этих нескольких случаев чистый металл перестали использовать для бытовых предметов, а ученые начали активно искать лекарство от «оловянной чумы». Выяснилось, что решить эту проблему в принципе невозможно, да и нет необходимости – гораздо удобнее вместо чистого олова использовать его сплавы, которые такой беде не подвержены. В то время получили, например, знаменитый «Пьютер» — он состоит из 95% олова, 2% меди и 3% сурьмы. Золотистый и достаточно прочный, он сегодня используется при производстве различных украшений и предметов быта. Так, например, именно из этого сплава, с золотым напылением, делают самые известные кинематографические награды — статуэтки «Оскара».

Самым известным сплавом, содержащим, олово, является бронза. Именно с ней связана целая эпоха в истории развития человечества. Долговечный металл способен донести до нас следы цивилизаций, даже спустя тысячелетия. Так, например, в 80-х годов прошлого века были найдены бронзовые исполины Китая: Следы загадочно исчезнувшей цивилизации, которая была намного старше Рима .

Понравилась статья? Тогда поддержи нас, жми:

Источник

Серое олово

Серое олово (или α-олово) — аллотропная модификация олова, кристаллизующаяся в кубической структуре типа алмаза и имеющая меньшую плотность, чем металлическое («белое») олово. При температуре ниже 13,2 °C белое олово переходит в серое, происходит увеличение удельного объема на 25,6 %, и металл рассыпается в серый порошок. Это превращение называется «оловянной чумой».

Серое олово является узкозонным полупроводником. Ниже 3,72 К α-Sn переходит в сверхпроводящее состояние.

Ссылки

Для улучшения этой статьи желательно ? :
  • Викифицировать статью.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Серое олово» в других словарях:

серое олово — pilkasis alavas statusas T sritis chemija apibrėžtis Alavo atmaina, patvari< 13,2 °C temperatūroje. atitikmenys: angl. gray tin, US; grey tin, GB; tin plaque rus. серое олово … Chemijos terminų aiškinamasis žodynas

ОЛОВО — хим. элемент, символ Sn (лат. Stannum), ат. и. 50, ат. м. 118,71; серебристо белый металл, мягкий и пластичный; существует в двух аллотропных модификациях белое олово ß Sn (плотность 7228 кг/м3), которое при температуре ниже +13,2°С переходит в… … Большая политехническая энциклопедия

ОЛОВО — (символ Sn), переходный элемент IV группы периодической таблицы, известный с древнейших времен. Основная руда КАССИТЕРИТ. Мягкое, пластичное, устойчивое к коррозии, олово используется в качестве защитного покрытия для железа, стали, меди и других … Научно-технический энциклопедический словарь

ОЛОВО — (лат. Stannum) Sn, химический элемент IV группы периодической системы, атомный номер 50, атомная масса 118,710. Серебристо белый металл, мягкий и пластичный; tпл 231,91 .С. Полиморфно; т. н. белое олово (или ? Sn) с плотностью 7,228 г/см&sup3… … Большой Энциклопедический словарь

Олово — (Tin) Металл олово, добыча и месторождения олова, производство и применение металла информация о металле олово, свойства олова, месторождения и добыча олова, производство и применение металла Содержание Определение термина История… … Энциклопедия инвестора

Олово — 50 Индий ← Олово → Сурьма … Википедия

олово — а; ср. Химический элемент (Sn), мягкий ковкий серебристо белый металл (применяется для пайки, лужения, приготовления сплавов и т.п.). * * * олово (лат. Stannum), Sn, химический элемент IV группы периодической системы. Серебристо белый металл,… … Энциклопедический словарь

олово — sn, серебристо белый мягкий и пластичный металл; химический элемент iv группы периодической системы, ат. н. 50, ат. масса 118.71. Плотность 5840 кг/мі (серое олово) и 7290 кг/мі (белое олово); температура плавления 213.9 °C. При температуре ниже… … Энциклопедия техники

ОЛОВО — Sn (от лат. stannum, что первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67% Sn; к 4 в. этим словом стали называть олово), химический элемент IVB подгруппы (включающей C, Si, Ge … Энциклопедия Кольера

Олово (Sn) — [tin] элемент IV группы Периодической системы; атомный номер 50; атомная масса 118,69; белый блестящий металл, тяжелый, мягкий и пластичный; состоит из 10 изотопов с массовымиЮ>, числами 112, 114 120, 122, 124; изотоп 120Sn наиболее распространен … Энциклопедический словарь по металлургии

Источник

Олово

Олово

Олово — химический элемент таблицы Менделеева под номером 14. Он относится к разряду легких цветных металлов. В твердом (естественном) состоянии он представляет собой вещество бело-серого цвета. Олово имеет небольшую массу, хорошо поддается пайке, плавлению, ковке и другим методам механической обработки. Оно может преобладать в различных аллотропических состояниях. Всего их четыре вида — α-Sn чаще всего встречается при температуре не более +13,2 градуса. β-олово получается если температурный показатель превышает +13,2 градуса. При высоких давлениях во внешней среде можно наблюдать образование y и γ-олова.

История

Впервые олово обнаружили еще около четырех тысяч лет назад. В давние времена серебристый металл был довольно редким материалом и стоил очень дорого. В основном его использовали как составляющую бронзовых сплавов. Как известно в те времена бронза была основным техническим материалом, из которого изготавливали различные вещи — посуду, инструменты, оружие, доспехи, украшения и другие предметы быта. Олово, присутствующее в составе бронзовых изделий ценилось на протяжении многих веков, сравнительно с другими металлами, которые тогда добывались.

Характеристика и физические свойства олова

Олово наделено множественными свойствами и вступает в реакцию со многими металлами, неметаллами и другими элементами периодической таблицы Менделеева. Поэтому рассмотрим общие характеристики вещества:

  • Олово способно преобладать в твердом или жидком состоянии, поэтому значения плотности в различных вариантах отличаются — в первом случае показатель приравнивается к 7.3 г/куб. см, во втором — 6,98 7.3 г/куб. см.
  • Что касается влиянию высоких температур, то стоит отметить, что олово начинает плавиться при 232 0С, а при температуре 2620 градусов оно начинает закипать.
  • Емкость теплоотдачи олова в затвердевшей форме составляет 226 Дж/(кг*К), а в жидком, эта цифра доходит до 268 Дж/(кг*К).
  • Молярная емкость теплоотдачи при стабильном давлении составляет: для белого олова — 27,11 Дж/(моль*К), для серого — 25,79 Дж/(моль*К).
  • Теплоотдача при плавлении олова — 7,19 кДж/моль, а при испарении — 296 кДж/моль.
  • Теплопроводность при оптимальной температуре (около 20 0С) приравнивается 65,26 Вт/(м*К).
  • Сопротивление электротока колеблется в пределах 0,115 мк Ом*м.
  • Удельная электрическая проводимость при 20 0С равняется 8,69 МСм/м.
  • Тугость металла твердой формы варьируется в рамках от 55 ГПа до 48 ГПа при условии температур от 0 до 100 0С.
  • Сопротивление при разрыве твердого олова равно 20 МПа.
  • Удлинение — до 40%.
  • Твердость серого олова достигает 62 МПа, белого — до 152 МПа.
  • Оптимальная температура для литья колеблется от 260 до 300 градусов.
  • При нагревании до + 170С олово приобретает хрупкую структуру.
Читайте также:  При охлаждении куска олова массой 200г

Белое и серое олово: в чем различие?

Олово — это элемент, относящийся к классу полиморфических металлов. В быту многие сталкиваются с его бета-модификацией. Это белое олово со стойкостью к температурам от 14 и выше градусов по Цельсию. Внешне оно представляет собой пластичный и мягкий материал белого цвета. Его структура представлена в виде кристаллической решетки, построенной по типу тетрагональной сингонии. Его атомное строение обуславливается окружением октаэдров, что дает олову плотность до 7,2 г/куб. м. Если зажать кусок олова в тиски и прислушаться, можно наблюдать своеобразный хруст, исходящий от трущихся кристаллов.

При воздействии низкой температуры на белое олово, структура металла начинает меняться, постепенно переходя в альфа-версию, приобретая серый оттенок. Это обуславливается тем, что при падении температуры ниже 0 градусов, кристаллы формируют новую структуру, как у алмаза. При этом, увеличивается объем металла, и он постепенно начинает распадаться, пока окончательно не превратиться в оловянный порошок.

Переход с одной модификации в другую, обуславливается воздействием низкой температуры. В естественных условиях окружающей среды, этот переход проходит немного быстрее, а максимально быстрый распад достигается при температуре — 33 градуса. Однако образование порошкообразного вещества может происходить не только под влиянием низких температур. Ионное излучение также может вызвать распад металла и его переход в состояние порошка. Существует возможность изменить структуру олова до гелиевого состояния, если достичь необходимого охлаждения в определенных условиях.

Электрофизические характеристики олова обуславливаются его структурой, поэтому каждой модификации присущи свои показатели. Например, бета-олово считается металлом, а версия альфа является полупроводником, который используется при пайке. При воздействии внешних факторов, альфа-олово (ниже 3,72 К) преобразуется в модификацию сверхпроводника. При этом атомы кристаллической решетки бета-модификации образуют s2p2, а форма альфа обращается в состояние sp3. При воздействии магнитного поля олово может проявлять себя по-разному. В одном случае оно парамагнитно, но при определенных обстоятельствам может стать диамагнитным.

Если представить, что различные модификации будут взаимодействовать между собой, то бета-олово может быстро трансформироваться в альфа-олово. Это происходит потому, что структура олова не постоянна. Такой процесс перехода можно сравнить с заражением. Такое поведение металла было замечено еще в 1870 году, и названо уже в 1911 году «оловянной чумой».

В ходе экспериментов и химических опытов было установлено, что заражение можно предотвратить и даже остановить. Для этого необходимо использовать химический элемент — висмут. Ученые даже нашли способ, чтобы ускорить процесс перехода с бета до альфа-версии. Этому способствует химическая реакция олова с хлор станнатом аммония.

Залежи олова

Олово способно локализоваться, как в открытых источниках, так и глубоко под землей. По наблюдениям ученых, процент содержания зарегистрированных источников ничтожно мал. А вот в олово-рудных ресурсах объем минерала значительно увеличивается. В последнее время большую часть находят в воде. Это обуславливается разложением нестабильных минералов, в окисленных зонах.

Олово как природный минерал

В природе олово встречается очень редко. Если сравнить его распространенность с другими металлами, то в этой категории оно занимает 47 место по всей земле. Запасы элемента в земном массиве варьируются в пределах от 2*10-4 до 8*10-3 %, без учета ресурсов в океанских и морских глубинах. Преобладающим минералом, из которого получают олово, считается касситерит. Он содержит в себе порядка 79% металла.

Первые месторождения олова

Самые большие запасы олова находятся в южных континентах — Китае и Японии. Помимо этого, немалые залежи оловянной руды найдены в Южной Америке. Россия также является месторождением данного минерала.

Кислотно-щелочные свойства

Учитывая, что олово является амфотерным веществом, то помимо основных свойств, оно может проявлять кислотные и щелочные характеристики. Благодаря им, появляется вероятность выявления олова во внешней среде. Элемент по некоторым свойствам похож на кварц, что дает возможность определять связь минерала как оксид с соединениями кислот. Большое содержание олова в ископаемых источниках может формировать кварцево-касситеритовые руды. Его щелочные свойства можно заметить в различных сульфитах.

Преобладающие формы

Олово часто встречается в составе горных образований, наполняющих земную кору. Реже его можно встретить в результате образования вулканических пород и других минеральных соединений. Самые большие запасы элемента преобладают в окисной форме.

Олово при низких температурах

Оловянная чума стала причиной трагических событий 1912, во время экспедиции Скотта на Южный полюс. Его путешествие закончилось преждевременно, а виной тому стали оловянные крышки на бачках с горючим. Находясь в холодных климатических условиях, температура достигла той отметки, когда олово преобразовалось в порошок, и все топливные запасы были потеряны.

Изотопы

Олово имеет постоянное количество нуклидов. Количество протонов у него приравнивается к 50-ти. Они равномерно насыщают зону вокруг ядра, что прибавляет больше энергетики. Поэтому, их число считают магическим, а сам элемент располагает максимальным объемом неизменных изотопов, по сравнению с другими элементами. В металле содержаться два изотопа, которые при выпадении из бета-олова становятся радиоактивными.

Твердые минеральные источники

В условиях внешней среды олово может преобладать в трех основных видах:

Рассеянный класс. Неопределенность названия говорит о том, что неизвестно в какой конкретной форме находится элемент. Обычно олово наблюдается в изоморфной рассеянной форме вместе с другими сопутствующими веществами. К ним относятся вольфрам, ниобий и тантал, которые образуют кислотные соединения. Цезий, Таллий и Ванадий способствуют формированию кислых и сульфидных связей. Если олово преобладает в обычном состоянии, то реагенты замещаются в различном изоморфном порядке.

Минеральный тип. Данный тип обуславливает наличием олова в различных минералах. Чаще всего ими являются гранаты, магнетиты, турмалины и другие образования. Обычно их взаимодействие влияет только на преобразование химического состава элемента, не нарушая его структуру. Максимальной накаляемостью в оловоносных минералах наблюдается соединение с гранатами, эпитодами и другими минералами.

Источники сульфидов содержат высокий процент олова как изоморфного компонента. В приморском регионе России найдены новые месторождения сфалеритов, халькопиритов, пиритов и других минералов. Учитывая ограничение изоморфных структур, то при этом случается разложение образца с выпадением филлита.

Формирование и виды осадочных пород

Как природный материал, олово может встречаться не только в различных минералах, породных образованиях, но и других источниках в виде различных соединений.

Читайте также:  Зубная паста содержащая фторид олова

Природные соединения и сплавы олова

Олово способно формироваться в совокупности с иными химическими веществами в геологических условиях, которые можно классифицировать следующим образом:

Образование руд происходят по сей день. Причиной вполне могут служить океанические осадки с Тихого океана, гидротермальной камчатской зоны или продукты выбросов Тол Бачинского вулкана.

Эффузивные или интрузивные магматические залежи траппов и пикритов на сибирской площадке, а также габброиды, гипербазит и магматические породы, локализующиеся на Камчатке.

Преобразование пород при гидротермическом и метасоматическом влиянии. К таковым стоит отнести золотоносные или медно-никелиевые залегания на территории России и Узбекистана.

Касситерит

Наиболее встречающимся оловянным ресурсом считается касситерит (SnO2). Он представлен в виде окисного соединения олова с кислородом. Учитывая, что этот образец является наиболее встречающимся минералом, содержащим большой процент олова, то первым делом нужно обращать внимание на его структуру. Если детально осмотреть образец породы, то можно наблюдать отдельные кристаллы олова. Они могут достигать до 3-4 мм в диаметре, а в некоторых случаях и больше.

Гидроокисные оловянные источники

На основе достоверной информации, подобные источники белого или серого металла занимают не лидирующие позиции. Они представлены в форме солей поли оловянных кислот. К таким можно отнести варламовит, сукулаит или отвердевшую примесь олова в магнетите. Чаще всего это полу аморфные соединения элемента. Помимо этого, олово содержится в оксидных соединениях — CuSn(OH)6, 3SnO·H2O и других оксидах.

Силикаты

Еще одним распространенным минералом, содержащим олово, является малахит. Он принадлежит к классу силикатов, которые способны формировать огромные залежи металла.

Шпинелиды

Шпинелиды являются еще одним источником окисных соединений, которые содержат оловянные примеси. Основным веществом считается нигерит.

Сульфидные соединения олова

Данный класс обуславливается соединением олова с серными породами. В производственной сфере они занимают вторую позицию. Основным материалом добычи олова является станнин. Помимо этого, к этой группе можно отнести и другие соединение на основе цветных металлов: Cu, Pb или Ag. Такие руды могут содержать различный процент олова, в зависимости от климатических условий.

Минерал Станнин

Оловянный колчедан — это второе название данного минерала, относящегося к сульфидному классу. Он является самым распределенным источником олова, залегающим на территории России. Процентное содержания искомого металла составляет от 10 до 40%. При увеличении этой доли можно наблюдать признаки разложения станина, сопровождающиеся выделением касситерита.

Коллоидная форма олова

С геохимической точки зрения, олово является сложным элементом, поэтому изучено оно не до конца. В природе можно наблюдать олово-кремнистые соединения, относящиеся к группе коллоидов. В основном, олово образуется в результате изменения структуры кристаллической решетки многих соединений и элементов. Благодаря этому и коломорфным связям, металл может изменять свое физическое состояние, образуя гелеобразные смеси.

В ходе множественных экспериментов, ученые выяснили, что при взаимодействии металла с хром-кремневым соединением, олово видоизменяется. При этом его коллоидная форма используется как вспомогательное звено.

Чтобы понять, как изменяется форма и химические свойства олова, необходимо рассмотреть несколько примеров перехода металла в жидкое состояние.

Учитывая, что его геохимические свойства являются наиболее неизученным разделом, то предоставленная информация, это не результаты проведенных опытов или исследований, а всего лишь теоретические выводы ученых. Основываясь на этих фактах, можно разделить локализацию олова в смесях на следующие классы:

  • Ионные связи.
  • Гидроксильные соединения.
  • Сульфидные связи.
  • Комплексные соединения.

Все наблюдения по поводу реакций или структуры ионных соединений, строятся на геохимических и валентных предположениях. Они делятся на две основные группы:

Простые ионы, которые наблюдались в примесях с малой долей рН и продуктах магматического разложения. Однако конкретных форм при условии газового или жидкого состояния металла выявлены небыли.

Галогениды — вещества, содержащие фтор и воздействующие на металл в процессе разложения и перехода в иное состояние.

Минеральные формы гидроксильных соединений в щелочной среде часто образуют двух, трех и четырехвалентные оловянные кислоты (H2SnO). Они могут формироваться естественным образом или иметь искусственное происхождение. Результаты проведенных исследований показали, что олово в составе кислот проявляется очень слабо и способна формировать химические комбинации по подобию варламовита.

Сульфидные связи в кислотной сфере крайне неустойчивы.

Комплексная связь была обнаружена в результате опытов, методом воздействия фторовых соединений на касситерит. Анализы показали, фторовые и хлоридные растворы при воздействии на минералы проявляют идентичные свойства. В ходе исследований было проделано несколько опытов с различными реактивами. В результате получились совокупные соединения модели Na2[Sn(OH)2F4]. И это только один из множественных образцов, которые были получены.

Олова-кремневые и коллоидные образования формируются при наличии касситерита, который наблюдается практически во всех оловянных месторождениях.

Особенности производства

Производственный процесс по изготовлению олова состоит из нескольких этапов. Сначала приготовленную руду помещают в специальные дробилки и мельницы, где минерал приобретает мелкую фракцию (кусочки не более 10 мм в диаметре). Затем гравитационно-вибрационным методом извлекаются частицы касситерита. Наряду с этим применяется флотационный метод обогащения минерала, после которого касситерит приобретает концентрат олова до 70%.

В ходе последующей переработки сырья, осуществляется удаление мышьяка и серы. После этого, полученный продукт отправляют в печь для выплавки. Там минерал послойно смешивается с древесными углями, для освобождения его от ненужных веществ. Здесь же добавляется Zn, Pb или Cu. Для очищенного олова используется метод плавки.

Сфера использования

Благодаря свои антикоррозийным свойствам, олово широко применяется при литье различных сплавов. Оно является одним из основных компонентов бронзы, изготовления белой жести и других материалов. Его успешно используют в электротехнической сфере для пайки контактов и микросхем. Олово также необходимо при производстве посуды, которая выполняется и специального оловянного сплава — пьютера.

Во всех вышеперечисленных случаях, элемент используется в малых долях. Большая часть олова приходится на плавление с медью, цинком, свинцом и сурьмой. Также возможно сочетание некоторых элементов: медь с цинком, медь с сурьмой и другие. Благодаря своей экологичности и проводимости, олово используют для изготовления кабелей с большой электропроводностью.

Также олово применяется для изготовления лакокрасочных материалов, которые имитирую золотистое покрытие. Цинко-оловянные соединения используют для легирования стали и нержавеющих сплавов из черного металла.

Помимо этого, оловянные изомеры, полученные искусственным путем являются источниками гамма-излучения, поэтому их успешно применяют в спектроскопии.

Благодаря своим свойствам, олово участвует в производстве анода и различного рода химических испытаниях. На основе свинцово-оловянных сплавов делают аккумуляторные батареи. Они превосходят обычные АКБ по качеству, емкости и сроку службы. Их энергетическая плотность в 5 раз превышает энергию обычных свинцовых аккумуляторов, имея при этом наименьшее сопротивление.

Источник