Сколько времени длилось нагревание олова

Сколько времени длилось нагревание олова

Печь, используемая для нагревания вещества, имеет три режима работы: максимальной, средней и минимальной мощности. В этой печи начинают нагревать 180 граммов олова, находящегося в твёрдом состоянии. После начала нагревания печь всё время остаётся включённой. На рисунке представлен график зависимости изменения температуры t олова от времени τ.

Выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Испарение олова началось при температуре t3.

2) Работе печи с максимальной мощностью за первые 9 минут соответствует участок графика CD.

3) Режиму минимальной мощности в течении первых 9 минут работы печи соответствует участок графика BC.

4) Участок графика АВ соответствует жидкому состоянию олова.

5) Участок графика DF соответствует плавлению олова.

Проанализируем каждое утверждение.

1) Из графика видно, что при температуре t3 олово ещё не достигло постоянного участка температурной кривой, то есть в точке t3 олово ещё находится в твёрдом состоянии.

2) Чем больше угол наклона графика, тем больше мощность, выделяемая печью. Следовательно, за первые 9 минут работе печи с максимальной мощностью соответствует участок CD.

3) Чем больше угол наклона графика, тем больше мощность, выделяемая печью. Следовательно, за первые 9 минут работе печи с минимальной мощностью соответствует участок AB.

4,5) Олово начали нагревать, когда оно находилось в твёрдом состоянии. Из графика видно, что температура олова при нагревании не меняется на участке DF, следовательно, именно на участке DF происходит плавлении олова.

Источник

Графики плавления и отвердевания

Урок 15. Физика 8 класс

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Графики плавления и отвердевания»

График плавления и отвердевания тела показывает нам все этапы процесса. Из него мы можем извлечь информацию о температуре плавления тела, например, о том, как долго это тело потребовалось нагревать, чтобы достичь той или иной температуры. Для понимания того, как строятся подобные графики, рассмотрим некоторые примеры.

На рисунке представлен график плавления и отвердевания железа.

В начальный момент времени, температура была равна 1200 о С, и пока она не достигла 1539 о С, плавление не началось. Молекулы сохраняли свой порядок, что характерно для твёрдого тела. По достижении температуры плавления, порядок нарушается, поскольку тело переходит в жидкое состояние. Его температура какое-то время остаётся постоянной, о чем свидетельствует горизонтальный участок графика. После того, как железо полностью расплавилось, температура снова начала увеличиваться. Порядок полностью нарушился, поскольку этот участок графика соответствует периоду, когда железо было полностью жидким. Достигнув отметки 1880 о С, железо перестали нагревать, и температура начала падать. Достигнув температуры кристаллизации, железо начало твердеть. Это заняло какое-то время, в течение которого температура вновь не менялась, начал восстанавливаться порядок. После этого, температура стала ниже температуры отвердевания, и железо вновь стало полностью твёрдым, а порядок молекул восстановился. Этому соответствует последний участок графика.

1. Построить график плавления олова. Температура плавления составляет 232 о С, а начальная температура 200 о С. За 5 мин олово достигнет температуры плавления, и ещё 5 мин будет плавиться. 2,5 мин занимает нагревание олова от температуры плавления до 250 о С, и столько же займет охлаждение до 232 о С.

Итак, возьмём 20 о С за одну клетку по вертикали и 2,5 мин за одну клетку по горизонтали. Тогда первая точка будет иметь координаты 0 минут и 200 градусов, а вторая — 5 минут и 232 градуса. Соединим эти две точки. В этой точке начинается плавление длительностью 5 минут. Температура не меняется, поэтому координаты третьей точки будет 10 минут и 232 градуса. После этого, олово нагревается до 250 градусов за 2,5 минуты, поэтому координаты четвёртой точки будут 12,5 минут и 250 градусов. Это точка является пиком графика, поскольку в этот момент олово достигло наивысшей температуры. Дальше график симметричен, поэтому абсолютно аналогичным способом достраиваем и вторую часть графика.

Для построения этого графика мы использовали некую начальную информацию о теле. Значит, из готового графика можно извлечь информацию.

2. На рисунке представлен график плавления и отвердевания для какого-то вещества.

И нам надо найти ответы на вопросы:

— Какой самой высокой температуры достигло вещество?

Итак, смотрим на график. Вертикальная ось соответствует температуре, следовательно, наивысшая температура соответствует пику графика. Это 1250 о С.

— Какова температура плавления данного вещества?

Температуре плавления соответствуют горизонтальные участки графика, поскольку температура остаётся неизменной во время плавления или кристаллизации. На графике видно, что горизонтальные участки соответствуют температуре 1000 о С, поэтому, это и есть температура плавления.

— Сколько времени заняло плавление, и сколько времени заняла кристаллизация?

На графике мы видим, что по горизонтальной оси, соответствующей времени между отметкой 0 и отметкой 40 — две клетки. Длина горизонтальных отрезков тоже составляет две клетки. Поэтому, и плавление, и кристаллизация заняли по 40 минут.

Читайте также:  Состав олова пос 40

— Какова скорость нагревания данного вещества в твердом состоянии, и какова скорость нагревания в жидком состоянии?

По вертикальной оси расстояние между отметкой 1000 и отметкой 1250 — одна клетка. Следовательно, расстояние в две клетки соответствует пятистам градусам. Тогда, в начальный момент времени, температура составляла 500 градусов. Мы видим на графике, что температура достигла температуры плавления за 40 минут. Поэтому, скорость нагревания в твердом состоянии равна 500 о С за 40 минут, т.е. 12,5 о С/мин.

На графике видно, что вещество в жидком состоянии нагрелось от 1000 о С до 1250 о С. По горизонтальной оси, длина этого процесса соответствует одной клетке, а, значит, двадцати минутам, т.к. 40 минут — это две клетки. Значит, скорость нагревания в жидком состоянии равна 250 о С за 20 минут, т.е. 12,5 о С/мин.

Следует помнить о том, что нагревание вещества в твердом состоянии на самом деле может происходить не с той же скоростью, что и нагревание вещества в жидком состоянии. Да и зависимость скорости нагревания или остывания от температуры может быть нелинейной. Несмотря на это, даже из такого графика можно извлечь, некоторую информацию.

Данный график предполагает достаточно сложные математические операции для подробного анализа, с которыми мы познакомимся намного позже. Однако, у нас достаточно знаний, чтобы ответить на следующие вопросы:

— Какая максимальная температура была достигнута данным веществом?

Опять же, обращаемся к самой высокой точке. Она соответствует 450 о С.

Держалась ли в какой-нибудь момент времени постоянная температура свыше 315 о С?

Постоянной температуре будет соответствовать горизонтальный участок графика. На данном графике, такой участок только один. Исходя из того, что отметка 450 о С находится на расстоянии 3 клетки от нулевой отметки по оси температуры, одна клетка соответствует 150 о С, а 2 клетки — 300 о С. Мы видим, что наш горизонтальный участок находится ниже отметки о С градусов, следовательно, температура выше 315 о С не держалась.

— Определите, нагревалось тело или остывало в первые 12 минут?

Одна клетка по горизонтальной оси соответствует 20 минутам. Мы видим, что на промежутке, более длительном, чем 12 минут, температура увеличивалась с течением времени. Следовательно, тело нагревалось.

Определите среднюю скорость нагревания в период с 40 до 100 минут.

Итак, отмечаем на графике интервал от 40 до 100 минут. Мы видим, что в этот период температура менялась по какому-то сложному закону. Однако, мы знаем, что бы ни происходило в этот период, температура возросла от 150 о С до 450 о С за 60 минут. Поэтому, в среднем, тело нагревалось со скоростью 300 о С в час или 5 о С в минуту.

При построении графиков помните, что очень важно соблюдать масштабирование, т.е. равные интервалы, относящиеся к одной и той же величине, обозначать равным количеством клеток.

Источник

Сколько времени длилось нагревание олова

Кусок олова массой m = 200 г с начальной температурой T = 0 °C нагревают в тигле на электроплитке, включённой в сеть постоянного тока с напряжением U = 230 В. Амперметр, включённый последовательно с плиткой, показывает силу тока I = 0,1 А. На рисунке приведён полученный экспериментально график зависимости температуры T олова от времени t. Считая, что вся теплота, поступающая от электроплитки, идёт на нагрев олова, определите его удельную теплоёмкость в твёрдом состоянии. Ответ дайте в джоулях на килограмм на градус Цельсия.

Мощность, идущая на нагревание олова, по закону Джоуля–Ленца и согласно условию равна

За время олово нагрелось на , причём его температура росла по линейному закону до момента времени , а затем олово начало плавиться, и температура почти сразу перестала меняться (см. график).

Уравнение теплового баланса для олова в твёрдом состоянии имеет вид:

откуда удельная теплоёмкость олова равна

Ответ :

Критерии оценивания выполнения задания Баллы
Приведено полное правильное решение, включающее следующие элементы:

1) верно записано краткое условие задачи;

2) записаны уравнения и формулы, применение которых необходимо и достаточно для решения задачи выбранным способом;

3) выполнены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу, и представлен ответ. При этом допускается решение «по частям» (с промежуточными вычислениями).

3
Правильно записаны необходимые формулы, проведены вычисления, и получен ответ (верный или неверный), но допущена ошибка в записи краткого условия или переводе единиц в СИ.

Представлено правильное решение только в общем виде, без каких-либо числовых расчётов.

Источник

Сколько времени длилось нагревание олова

Печь, используемая для нагревания вещества, имеет три режима работы: максимальной, средней и минимальной мощности. В этой печи начинают нагревать 180 граммов олова, находящегося в твёрдом состоянии. После начала нагревания печь всё время остаётся включённой. На рисунке представлен график зависимости изменения температуры t олова от времени τ.

Выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Испарение олова началось при температуре t3.

2) Работе печи с максимальной мощностью за первые 9 минут соответствует участок графика CD.

3) Режиму минимальной мощности в течении первых 9 минут работы печи соответствует участок графика BC.

4) Участок графика АВ соответствует жидкому состоянию олова.

5) Участок графика DF соответствует плавлению олова.

Проанализируем каждое утверждение.

1) Из графика видно, что при температуре t3 олово ещё не достигло постоянного участка температурной кривой, то есть в точке t3 олово ещё находится в твёрдом состоянии.

2) Чем больше угол наклона графика, тем больше мощность, выделяемая печью. Следовательно, за первые 9 минут работе печи с максимальной мощностью соответствует участок CD.

3) Чем больше угол наклона графика, тем больше мощность, выделяемая печью. Следовательно, за первые 9 минут работе печи с минимальной мощностью соответствует участок AB.

4) Олово начали нагревать, когда оно находилось в твёрдом состоянии. Участок графика АВ соответствует твёрдому состоянию олова.

5) Из графика видно, что температура олова при нагревании не меняется на участке DF, следовательно, именно на участке DF происходит плавлении олова.

Источник

41. Плавление и отвердевание

Сборник задач по физике, Лукашик В.И.

1055. Почему на Севере для измерения низких температур воздуха пользуются не ртутными термометрами, а спиртовыми?
При температуре северного воздуха ртуть отвердевает, а спирт не замерзает.

1056. Почему лед не сразу начинает таять, если его внести с мороза в натопленную комнату?
Тепловая энергия комнаты передается льду постепенно.

1057. Температура плавления стали 1400 °С. При сгорании пороха в канале ствола орудия температура достигает 3600 °С. Почему ствол орудия не плавится при выстреле?
Температура 3600°С создается ненадолго. Количество теплоты, выделенной порохом, недостаточно для плавления ствола, оно идет на работу по расширению газа в стволе.

1058. Два тигля с одинаковой массой расплавленного свинца остывают в помещениях с разной температурой. Какой график построен для теплого помещения, а какой — для холодного (рис. 266, а, б)? Найдите различия в графиках и объясните причины этих различий.
Тигль «а» остывает в теплой комнате, а тигль «б» — в холодной. Остывание тигля «б» происходит быстрее, потому что он отдает больше внутренней энергии окружающей среде в единицу времени.

1059. Почему зимой при длительных остановках выливают воду из радиатора автомобиля?
При низких температурах вода расширяется и может деформировать радиатор и рубашку двигателя. (Конечно, вода сначала превращается в лед).

1060. Оболочки космических кораблей и ракет делают из тугоплавких металлов и специальных сплавов. Почему?
При движении летательных аппаратов в атмосфере с большой скоростью на них действует большая сила трения. Работа силы трения идет на увеличение внутренней энергии обшивки, и ее температура достигает высоких значений.

1061. При спаивании стальных деталей иногда пользуются медным припоем. Почему нельзя паять медные детали стальным припоем?
Медная деталь расплавится раньше, чем стальной припой, поскольку температура плавления меди меньше, чем у стали.

1062. Почему невозможно пользоваться очень маленьким паяльником при пайке массивных кусков меди или железа?
Количество теплоты, передаваемого маленьким паяльником, недостаточно для повышения температуры массивной детали до температуры плавления.

1063. Объясните на основании молекулярно-кинетической теории, почему у тела не повышается температура в момент плавления и кристаллизации.
Температура — мера средней кинетической энергии молекул. При плавлении (кристаллизации) энергия, подводимая телу (теряемая телом) идет на разрушение (создание) кристаллической решетки. При этом изменяется потенциальная энергия молекул. На это расходуется энергия, кинетическая энергия не меняется, а, значит, не меняется температура.

1064. Два одинаковых сосуда из полиэтилена заполнили водой, температура которой 0 °С. Один сосуд поместили в воду, другой — в измельченный лед, имеющие, как и окружающий воздух, температуру 0 °С. Замерзнет ли вода в каком-нибудь из этих сосудов?
Нет; в первом случае это очевидно. Во втором также нет, так как для отвердевания воды необходимо отвести некоторое количество теплоты

1065. На рисунке 267 показано, как со временем изменяется температура при нагревании и охлаждении свинца. Твердому или жидкому состоянию соответствуют участки графика АВ, ВС, CD, GH? Что может быть причиной того, что участок GH круто идет вниз? Чему равны температура плавления и кристаллизации свинца?
АВ — твердое, ВС — твердое и жидкое, CD — жидкое, GH — твердое. На участке GH от свинца отводится количество теплоты. Температура плавления свинца — 327°С.

1066. В сосуде находится лед при температуре -10 °С. Сосуд поставили на горелку, которая дает в равные промежутки времени одинаковое количество теплоты. Укажите, какой график (рис. 268) соответствует описанному случаю.
Самый верхний график.

1067. Постройте примерный график для нагревания, плавления и кристаллизации олова.

1068. Внимательно рассмотрев график охлаждения и кристаллизации вещества (рис. 269), ответьте на вопросы: для какого вещества составлен график? Сколько времени охлаждалось вещество от 20 °С до температуры кристаллизации? Сколько времени длился процесс кристаллизации? О чем говорит участок графика DE? Как приблизительно расположились бы точки А, В, С, D, Е относительно друг друга и оси t, если бы при той же температуре окружающей среды был бы составлен график для того же вещества, но большей массы?
График составлен для воды. Вещество охлаждалось 20 мин. Процесс кристаллизации длился 30 минут. На участке DE к веществу не подводили и не отводили теплоту. Для вещества большей массы участки АВ, ВС (как, впрочем, и CD, DE) вытянулись бы вдоль оси t.

1069. При постановке эксперимента отдельно нагревали до 1000 °С алюминий, железо, медь, цинк, сталь, серебро и золото. В каком состоянии — жидком или твердом — находились эти металлы при указанной температуре?
В жидком состоянии находились: алюминий, цинк, серебро. В твердом — железо, медь, сталь, золото.

1070. Болванки из алюминия и серого чугуна одинаковой массы нагреты до температуры их плавления. Для плавления какого из этих тел потребуется больше энергии? Во сколько раз?

1071. Алюминиевый и медный бруски массой 1 кг каждый нагреты до температуры их плавления. Для плавления какого тела потребуется больше количества теплоты? На сколько больше?

1072. Смогли бы мы наблюдать привычные нам изменения в природе весной, если бы удельная теплота плавления льда была такой же маленькой, как у ртути?
Смогли бы, но паводки были бы более обильными вследствие быстрого таяния льда.

1073. Почему агроном дал указание полить вечером огородные культуры, когда по радио передали сообщение о том, что ночью будут заморозки? Ответ объясните.
Огородные культуры поливают водой перед заморозками для предохранения их от замерзания. Вода покрывается тонким слоем льда и защищает посадки от отрицательных температур.

1074. На сколько при плавлении увеличится внутренняя энергия ртути, свинца, меди массами по 1 кг, взятых при их температурах плавления?
По определению удельная теплота плавления — это количество теплоты, которое необходимо передать телу массой 1 кг при температуре плавления для того, чтобы его перевести в жидкое состоянии. По закону сохранения энергии все это количество теплоты пойдет на изменение внутренней энергии тела. При плавлении 1 кг ртути внутренняя энергия увеличилась на 104Дж, 1 кг свинца — на 2,5 • 10 4Дж, 1 кг меди — на 21 • 10 4Дж.

1075. На сколько уменьшится внутренняя энергия при кристаллизации брусков из белого чугуна массой 2 кг, олова массой 1 кг, железа массой 5 кг, льда массой 10 кг, охлажденных до температуры их кристаллизации?

1076. Во сколько раз плавление куска железа массой 1 кг требует больше энергии, чем плавление той же массы белого чугуна, серебра, серого чугуна и ртути, нагретых до своей температуры плавления?

1077. Во сколько раз требуется больше энергии для плавления льда при температуре 0 °С, чем для изменения температуры той же массы льда на 1 °С?

1078. Какое количество теплоты поглощают при плавлении тела из серебра, золота, платины? Масса каждого тела равна 10 г. Тела взяты при их температурах плавления.

1079. Какое количество теплоты поглощает при плавлении лед массой 5 кг, если начальная температура льда 0; -1; -10 °С?

1080. Какое количество теплоты поглощает при плавлении кусок свинца массой 1 г, начальная температура которого 27 °С; олова массой 10 г, взятого при температуре 32 °С?

1081. Сколько энергии приобретет при плавлении кусок свинца массой 0,5 кг, взятый при температуре 27 °С?

1082. Сколько энергии приобретет при плавлении брусок из цинка массой 0,5 кг, взятый при температуре 20 °С?

1083. На сколько увеличилась внутренняя энергия расплавленного железного металлолома массой 4 т, начальная температура которого была равна 39 °С?

1084. Масса серебра 10 г. Сколько энергии выделится при его кристаллизации и охлаждении до 60 °С, если серебро взято при температуре плавления?

1085. Сколько энергии выделится при кристаллизации и охлаждении от температуры плавления до 27 °С свинцовой пластинки размером 2X5X10 см?

1086. Из копильника вагранки для отливки детали выпустили расплавленное железо массой 50 кг. Какое количество теплоты выделилось при его кристаллизации и охлаждении до 39 °С?

1087. Какое количество теплоты потребуется для обращения в воду льда массой 2 кг, взятого при 0 °С, и при нагревании образовавшейся воды до температуры 30 °С?

1088. Готовя пищу, полярники используют воду, полученную из расплавленного льда. Какое количество теплоты потребуется для того, чтобы расплавить лед массой 20 кг и полученную воду вскипятить, если начальная температура льда равна -10 °С? (Потерями подводимой теплоты на нагревание окружающих тел пренебречь.)

1089. Объем формы для пищевого льда равен 750 см3. Сколько энергии отдают вода и лед форме и окружающему ее воздуху в холодильнике, если у воды начальная температура 12 °С, а температура образовавшегося льда равна -5 °С?

1090. Какое количество теплоты пошло на приготовление в полярных условиях питьевой воды из льда массой 10 кг, взятого при температуре -20 °С, если температура воды должна быть равной 15 °С?

1091. Рассчитайте расход энергии на процессы, соответствующие участкам АВ, ВС и CD графика (рис. 270), приняв массу льда равной 0,5 кг.

1092. Сколько энергии выделилось при отвердевании и охлаждении до 25 °С заготовки маховика массой 80 кг, отлитой из белого чугуна? Удельную теплоемкость чугуна принять равной удельной теплоемкости железа. Температура плавления чугуна равна 1165 °С.

1093. Свинцовая деталь массой 100 г охлаждается от 427 °С до температуры плавления, отвердевает и охлаждается до 27 °С. Какое количество теплоты передает деталь окружающим телам? (Удельную теплоемкость расплавленного свинца принять равной 170 Дж/(кг-°С).)

1094. В железной коробке массой 300 г мальчик расплавил 100 г олова. Какое количество теплоты пошло на нагревание коробки и плавление олова, если начальная температура их была равна 32 °С?

1095. Железная заготовка, охлаждаясь от температуры 800 до 0 °С, растопила лед массой 3 кг, взятый при 0 °С. Какова масса заготовки, если вся энергия, выделенная ею, пошла на плавление льда?

Источник