Сульфат свинца с азотной кислотой

MnSO4 + PbO2 + HNO3 = ? уравнение реакции

Составьте химическое уравнение по схеме MnSO4 + PbO2 + HNO3 = ? Расставьте стехиометрические коэффициенты. Укажите тип взаимодействия. Укажите окислитель и восстановитель. Дайте определение окислительно-восстановительным реакциям. Заранее, большое спасибо!

Реакция взаимодействия между сульфатом марганца (II), оксидом свинца (IV) и азотной кислотой (MnSO4 + PbO2 + HNO3 = ?) приводит к образованию нитрата свинца (II), марганцовой кислоты, сульфата свинца (II) и вода. Молекулярное уравнение реакции имеет вид:

Запишем ионные уравнения, учитывая, что оксиды и вода на ионы не распадаются, т.е. не диссоциируют.

Первое уравнение называют полным ионным, а второе – сокращенным ионным.
Данная реакция относится к окислительно-восстановительным, поскольку химические элементы марганец и свинец изменяют свои степени окисления. Схемы электронного баланса выглядят следующим образом:

Окисление – это отдача электронов веществом, т.е. повышение степени окисление элемента. Вещества, отдающие свои электроны в процессе реакции, называются восстановителями (в данном случае это сульфат марганца (II)).
Восстановление – это смещение электронов к веществу или понижение степени окисления элемента. Вещества, принимающее электроны, называется окислителем (в данном случае это оксид свинца (IV)).

Источник

Свинец (Plumbum)

Ат. вес 207,21. Свинец встречается в природе в виде различных соединений. Наиболее важная руда, из которой добывается свинец, — свинцовый блеск PbS.

Крупные месторождения свинцовых руд имеются в Австралии, США, Канаде, Мексике и Германии. В СНГ месторождения свинца находятся в Казахстане и Восточной Сибири, в Северной Осетии, на Алтае и в других местах.

Получение свинца из свинцового блеска можно вести обычным способом, обжигая руду для превращения ее в окись свинца и затем восстанавливая полученную окись свинца углем.

Существует и другой способ восстановления свинца из руды, при котором обходятся совсем без угля. Для этого руду сперва подвергают неполному обжиганию, умеренно нагревая ее в специальных печах при доступе воздуха так, чтобы только часть PbS окислилась. При этом происходят следующие реакции:

Затем, продолжая нагревание, доступ воздуха прекращают. Оставшийся неизменным сульфид реагирует с образовавшимися окисью и сульфатом, переходя в металлический свинец:

PbS + 2РbО + 3Рb + SO2 PbS + PbSO4 = 2Pb + 2SO2

Распространенность свинца в земной коре выражается величиной того же порядка, что и распространенность олова (1,6 • 10 -3 весовых процента).

Свинец—голубовато-белый тяжелый металл уд. веса 11,34. Он очень мягок, легко режется ножом. Температура плавления свинца 327,4°. На воздухе свинец быстро покрывается тонким слоем окиси, защищающим его от дальнейшего окисления. В ряду напряжений свинец стоит непосредственно перед водородом. Его нормальный потенциал равняется —0,126 вольта.

Вода сама по себе не взаимодействует со свинцом, но в присутствии воздуха свинец постепенно разрушается водой с образованием гидроокиси свинца:

Однако при соприкосновении с жесткой водой свинец покрывается защитной пленкой нерастворимых солей (главным образом сульфата и основного карбоната свинца), препятствующей дальнейшему действию воды и образованию Рb(ОН)2.

Разбавленная соляная и серная кислоты почти не действуют на свинец вследствие малой растворимости соответствующих свинцовых солей. Легко растворяется свинец в азотной кислоте. Органические кислоты, особенно уксусная, также растворяют свинец в присутствии кислорода воздуха. Процесс протекает аналогично процессу растворения меди в кислотах ).

Свинец растворяется также и в щелочах, образуя плумбиты.

Все растворимые соединения свинца ядовиты. Свинец широко используется в технике. Главными потребителями свинца являются кабельная и аккумуляторная промышленности, где свинец применяется для изготовления оболочек для кабелей и пластин аккумуляторов. На сернокислотных заводах из свинца изготовляют кожухи башен, змеевики холодильников и другие ответственные части аппаратуры. Свинец идет на изготовление боеприпасов, например винтовочных и шрапнельных пуль, а также на выделку дроби. Он входит в состав многих сплавов, например сплавов для подшипников (баббитов), типографского сплава (гарта), паяльного металла и др. Свинец хорошо поглощает γ-лучи и широко используется для защиты от γ-излучения при работе с радиоактивными веществами.

В 1957 г. выплавка свинца в капиталистических странах составила 2,1 млн. т.

В своих соединениях свинец является главным образом положительно двухвалентным. Однако, подобно другим элементам подгруппы германия, он может быть и положительно четырехвалентным. Соединения четырехвалентного свинца значительно менее устойчивы, чем соединения, в которых он двухвалентен.

Доказана возможность образования летучего соединения свинца с водородом РbH4, которое еще менее устойчиво, чем SnH4.

Читайте также:  Чему равна удельная теплоемкость свинца что это означает

Свинец образует два простых окисла РbО и РbO2, отвечающих его двух- и четырехвалентному состояниям, и два смешанных окисла Рb2O3 и Рb3O4, в которых одновременно проявляются обе степени валентности свинца. Известно и очень неустойчивое соединение свинца с кислородом РЬ20 (закись свинца).

Соединения двухвалентного свинца. Окись свинца РbО представляет собой желтый порошок, образующийся при нагревании расплавленного свинца на воздухе. После прокаливания примерно при 500° она приобретает красновато-желтый цвет и в таком виде называется глетом. Окись свинца имеет различное применение: из нее получают другие соединения свинца, она служит для заполнения ячеек в аккумуляторных пластинах, применяется при выработке некоторых сортов стекла и т. п.

Гидрат окиси свинца Рb(ОН)2

Образуется при действии щелочей на растворимые соли двухвалентного свинца. Он имеет амфотерный характер и в кислотах растворяется с образованием солей двухвалентного свинца, а в щелочах с образованием солей, называемых плумбитами:

Однако более вероятно, что при растворении в щелочах образуются гидроксисоли по уравнению:

Соли двухвалентного свинца

1. Хлорид свинца (II), или хлористый свинец, РbСl2 получается в виде белого осадка при действии на растворы свинцовых солей соляной кислотой или растворимыми хлоридами. Он мало растворим в холодной воде, но довольно значительно растворяется в горячей воде.

2. Иодид свинца (II), или йодистый свинец, PbJ2 выпадает в виде желтого осадка из растворов свинцовых солей при введении в них ионов иода. В холодной воде он практически нерастворим, но довольно хорошо растворяется в горячей воде, образуя бесцветный раствор. При охлаждении последнего йодистый свинец выделяется в виде блестящих золотисто-желтых кристаллов.

3. Ацетат свинца (II), или уксуснокислый свинец, Рb(СН3СОO2)2 — одна из немногих легко растворимых солей свинца, широко применяется в лабораторной практике. Ввиду интенсивного сладкого вкуса ацетат свинца называется также свинцовым сахаром. Он применяется при крашении тканей и для получения других соединений свинца.

4. Сульфат свинца (II), или сернокислый свинец, PbSO4 выпадает в виде белого порошкообразного осадка при прибавлении серной кислоты к растворам свинцовых солей. В воде и разбавленных кислотах сульфат свинца почти нерастворим, но довольно легко растворяется в концентрированных растворах щелочей с образованием плумбитов. Концентрированная серная кислота также растворяет сульфат свинца, превращая его в кислую соль Pb(HSO4)2.

5. Сульфид свинца (II), или сернистый свинец, PbS образуется в виде черного осадка при действии сероводорода на соли свинца. Поэтому бумажка, смоченная раствором свинцовой соли, быстро темнеет, если в воздухе присутствуют даже незначительные количества сероводорода, чем часто пользуются для обнаружения последнего. В природе PbS встречается в больших количествах в виде свинцового блеска.

6. Основной карбонат свинца (II) Рb3(ОН)2(СO3)2 осаждается из растворов свинцовых солей при действии соды. Раньше широко применялся для изготовления белой масляной краски, обладающей высокой кроющей способностью, известной под названием свинцовых белил. От действия сероводорода эта краска темнеет вследствие образования черного сульфида свинца (II) PbS (причина потемнения старинных картин, писанных масляными красками).

Так как свинец лишь с трудом может быть переведен из двухвалентного состояния в четырехвалентное, то в отличие от солей олова соли двухвалентного свинца практически не обладают восстановительными свойствами.

Соединения, четырехвалентного свинца

Двуокись свинца РbО2 — темнобурый порошок, образующийся при действии сильных окислителей на окись свинца и соли двухвалентного свинца. В химическом отношении двуокись свинца, подобно двуокиси олова, представляет собой амфотерный окисел с преобладанием кислотных свойств. Двуокиси свинца соответствуют орто- и метасвинцовая кислоты H4PbO4 и Н2РbO3, не существующие в свободном состоянии, но образующие довольно прочные соли. Так, например, при сплавлении двуокиси свинца с едким кали п олучается калийная соль метасвинцовой кислоты K2PbO3.

Основные свойства двуокиси свинца проявляются в образовании очень неустойчивых солей четырехвалентного свинца. Так, при действии на двуокись свинца соляной кислоты в первый момент образуется хлорид свинца (IV) PbCl4, который, однако, легко отщепляет хлор, переходя в РbСl2:

Обе реакции обратимы. Если действовать хлором на суспен-зию РbСl2 в соляной кислоте, то можно получить тетрахлорид свинца в виде маслянистой жидкости, застывающей при —15° в кристаллическую массу.

Известен также сульфат четырехвалентного свинца Pb(SO4)2. Сурик Рb3O4 — вещество яркокрасного цвета, применяемое для приготовления обыкновенной красной масляной краски. Сурик получается при продолжительном нагревании окиси свинца на воздухе. Его можно рассматривать как свинцовую соль ортосвинцовой кислоты Рb2РbO4.

При нагревании с разбавленной азотной кислотой сурик разлагается с выделением бурой двуокиси свинца:

Рb2РbO4 + 4HNO3 = 2Pb(NO3)2 + PbO2 + 2H2O Другой смешанный окисел свинца Рb2O3 можно рассматри вать как свинцовую соль метасвинцовой кислоты РbРbО3.

Читайте также:  Что вызывает отравление ионами свинца

Двуокись свинца и все соединения четырехвалентного свинца ввиду их неустойчивости являются энергичными окислителями.

Вы читаете, статья на тему Свинец (Plumbum)

Похожие страницы:

Понравилась статья поделись ей

Источник

Химия. Опять. =(

1. Преобразуйте данную схему в уравнение реакции и предложите все возможные способы смещения равновесия реакции вправо: NO2 (г.) + О2 (г.) + Н2О (ж.) (здесь должны быть стрелки туда и обратно) НNO3 (ж.) + Q

2. Вычислите массовую долю примесей, содержащихся в образце нитрата натрия, если при нагревании данного образца массой 20г удалось получить кислород объемом 2,24 л (н.у.)

3. Из данного перечня веществ выберете те, с которыми будет реагировать разбавленная азотная кислота: свинец, оксид свинца (2), гидроксид свинца (2), сульфат свинца (2), карбонат свинца (2). Запишите уравнения реакций. Составьте к уравнениям окислительно-восстановительных реакций схемы электронного баланса, а для реакций ионного обмена составьте ионные уравнения.

4. Напишите уравнения реакций, с помощью которых можно осуществить цепочку превращений веществ: Азот—> Аммиак—> Оксид азота (2)—> Оксид азота (4)—> Азотная кислота—> Нитрат аммония—> Аммиак. Уравнения окислительно-восстановительных реакций запишите или со схемой электронного баланса, или с обозначением перехода электронов стрелкой.

задание большое начну со второй задачи
2NaNO3=2NaNO2+O2
M(NaNO3)=85 г/моль m=170г X:170=2,24:22,4 X=17 г n=mпракт: mтеоретич. =17:20=0,85 или85%
Рв+4НNO3= Pb(NO3)2+2NO2+2H2O
Pb0-2l—Pb2+ 1 восстановитель
N+5+l—N+4 2 окислитель
PbO +2HNO3=Pb(NO3)2+H2O
РвO+2H++2NO3- =Pb2++2NO3-+H2O
Pb(OH)2+2HNO3=Pb(NO3)2+2H2O
Pb(OH)2+2H++2NO3-=Pb2++2NO3-+2H2O
PbCO3+2HNO3=Pb(NO3)2+H2O+CO2
PbCO3+2H++2NO3-=Pb2++2NO3-+H2O+CO2 cам сократишь ионы, которые повторяются с двух сторон ур-я
и напишешь сокращенные ионные
NO—NO2—HNO3—NH4NO3—-NH3
2NO+O2=2NO2
4NO2+2H2O+O2=4HNO3
NH4OH+HNO3=NH4NO3+H2O
NH4NO3+NaOH=NaNO3+NH3+H2O учись сам составлять электронный баланс см выше

4NO2+2H2O+O2= 4HNO3+Q
уменьшаем температуру V1>V2
увеличиваем концентрацию О2 V1>V2
повышаем давление V1>V2
успехов, девятиклассник

Источник

Нитрат свинца II

Нитрат свинца

Систематическое
наименование
нитрат свинца II
Хим. формула Pb(NO3)2
Состояние бесцветное вещество
Молярная масса 331.2 г/моль
Плотность (20 °C) 4,53 г/см³
Температура
• плавления (разл.) 270 °C
• вспышки негорюч °C
Растворимость
• в воде (20 °C) 52 г/100мл (100 °C) 127 г/100 мл
• в остальных веществах в азотной кислоте, этаноле: нерастворим
Показатель преломления 1.782
Координационная геометрия кубооктаэдрическая
Кристаллическая структура гранецентрированная кубическая
Рег. номер CAS 10099-74-8
PubChem 16683880
Рег. номер EINECS 233-245-9
SMILES
RTECS OG2100000
ChEBI 37187
Номер ООН 1469
ChemSpider 23300 и 21781774
Пиктограммы ECB
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Нитрат свинца II (Свинец азотнокислый) (динитрат свинца) — неорганическое химическое соединение с химической формулой Pb (NO3)2. В обычном состоянии — бесцветные кристаллы или белый порошок. Токсичен, канцерогенен. Хорошо растворим в воде.

Содержание

История

Исторически первое промышленное применение нитрата свинца II — это использование его в качестве сырья при производстве свинцовых пигментов, таких, как «хром желтый» (хромат свинца II), «хром оранжевый» (гидроксид-хромат свинца II) и аналогичных соединений свинца. Эти пигменты использовались для крашения текстильных изделий.

В 1597 немецкий алхимик Андреас Либавиус первым описал нитрат свинца, дав ему название plumb dulcis и calx plumb dulcis, что означает «сладкий свинец» из-за его вкуса.

Процесс производства был и остается химически простым — растворение свинца в aqua fortis (азотная кислота), а затем очистка осадка. Тем не менее, производство оставалось мелким на протяжении многих веков, а о промышленном производстве в качестве сырья для производства других соединений свинца не сообщалось до 1835. В XIX веке динитрат свинца стали производить на коммерческой основе в Европе и Соединенных Штатах.

В 1974 году в США потребление соединений свинца, за исключением пигментов и добавок в бензин, составляло 642 тонны.

Физические свойства

Нитрат свинца хорошо растворяется в воде (52,2 г/100 г воды) с поглощением тепла, плохо растворяется в этиловом и метиловом спиртах, ацетоне.

Кристаллическая структура

Кристаллическая структура твердого динитрата свинца была определена с помощью нейтронной дифракции. Нитрат свинца образует бесцветные диамагнитные кристаллы, плотность 4,530 г/см³, кубическая сингония, пространственная группа Pa3, а = 0,784 нм, Z=4. Каждый атом свинца окружён двенадцатью атомами кислорода (длина связи 0,281 нм). Все длины N—O связей одинаковы — 0,127 нм.

Интерес исследователей к кристаллической структуре нитрата свинца был основан на предположении свободного вращения нитратных групп в кристаллической решетке при высоких температурах, но это не подтвердилось.

Кроме кубической разновидности нитрата свинца была получена моноклинная форма, которая плохо растворима в воде даже при нагревании.

Получение

Динитрат свинца не встречается в природе. Промышленные и лабораторные методы его получения сводятся к растворению в разбавленной азотной кислоте свинца, его оксида или гидроксида:

кислоту берут с избытком для подавления гидролиза и снижения растворимости нитрата свинца.

При очистке азотной кислотой отходов, содержащих свинец, например, при обработке свинцово-висмутных отходов на заводах, образуется динитрат свинца как побочный продукт. Эти соединения используются в процессе цианирования золота.

Химические свойства

Динитрат свинца хорошо растворяется в воде, давая бесцветный раствор. Растворимость сильно увеличивается при нагревании:

Растворимость в воде, г/100 г 45,5 52,2 58,5 91,6 116,4
Температура, °C 10 20 25 60 80

Водный раствор диссоциирует на катионы свинца и нитрат-анионы:

Раствор нитрата свинца(II) подвергается гидролизу и имеет слабокислую реакцию, которая имеет показатель pH от 3,0 до 4,0 для 20 % водного раствора. При избытке ионов NO3 − в растворе образуются нитратокомплексы [Pb(NO3)3] − , [Pb(NO3)4] 2− и [Pb(NO3)6] 4− . При повышении pH раствора образуются гидроксонитраты переменного состава Pb(OH)x(NO3)y, некоторые из них выделены в твёрдом состоянии.

Так как только динитрат и ацетат свинца II являются растворимыми соединениями свинца, то все остальные соединения можно получить обменными реакциями:

Любое соединение, содержащее катион свинца II, будет реагировать с раствором, содержащим йодид анион с образованием осадка оранжево-жёлтого цвета (йодид свинца II). Из-за разительной перемены цвета эта реакция часто используется для демонстрации под названием золотой дождь:

Pb 2+ + 2 I − ⟶ PbI2

Аналогичная реакция обмена проходит и в твердой фазе. Например, при смешении бесцветных йодида калия и динитрата свинца, и сильного измельчения, например, перетиранием в ступке, происходит реакция:

Цвет полученной смеси будет зависеть от относительного количества использованных реагентов и степени измельчения.

При растворении нитрата свинца в пиридине или жидком аммиаке образуются продукты присоединения, например, Pb(NO3)2·4C5H5N и Pb(NO3)2·n NH3, где n=1, 3, 6.

Динитрат свинца является окислителем. В зависимости от типа реакции он может быть как Pb 2+ -ион, который имеет стандартный редокс-потенциал (E 0 ) −0.125 V, или нитрат-ион, который в кислой среде имеет (E 0 ) +0.956 V .

При нагревании кристаллов динитрата свинца они начинают разлагаться на оксид свинца II, кислород и диоксид азота, процесс сопровождается характерным треском. Этот эффект называется декрепитация:

Благодаря этому свойству нитрат свинца иногда используется в пиротехнике.

Применение

Динитрат свинца используется в качестве исходного сырья при производстве большинства других соединений свинца.

В связи с опасным характером данного соединения, в промышленной сфере отдается предпочтение в использовании альтернативных соединений. Практически полностью отказались от использования свинца в красках. Другие исторические применения данного вещества в спичках и фейерверках, также уменьшились или прекратились.

Динитрат свинца используется как ингибитор полимеров нейлона и других полиэфиров, в покрытиях фототермографической бумаги, а также в качестве зооцида.

В лабораторной практике динитрат свинца используется как удобный и надежный источник тетраоксида диазота.

Примерно с 2000 года нитрат свинца II начал использоваться при цианировании золота. Для улучшения выщелачивания в процессе цианирования золота добавляется динитрат свинца, при этом используется очень ограниченное его количество (от 10 до 100 мг динитрата свинца на килограмм золота).

В органической химии динитрат свинца был использован в качестве окислителя, например, в качестве альтернативы реакции Соммелета для окисления бензилов галогенидов до альдегидов. Он также нашёл применение для получения изотиоцианатов из дитиокарбаматов. Из-за своей токсичности он стал находить все меньшее применение, но по прежнему находит нерегулярное использование в SN1 реакции.

Меры предосторожности

Динитрат свинца токсичен и канцерогенен, является окислителем и классифицируется (как и все неорганические соединения свинца) вероятно канцерогенное вещество для человека (категория 2А) со стороны Международного агентства по изучению рака. Следовательно, он должен обрабатываться и храниться с соблюдением соответствующих мер предосторожности для того, чтобы предотвратить вдыхание, приём внутрь или контакт с кожей. Из-за опасного характера и ограниченного применения вещество должно находиться под постоянным контролем. ПДК = 0,01 мг/м³.

При приеме внутрь может привести к острому отравлению, так же как и другие растворимые соединения свинца.

Отравления приводят к раку почек и глиомы у подопытных животных и рака почек, рака мозга и рака легких у людей, хотя исследования работников, подвергающихся воздействию свинца, часто осложнялись одновременным воздействием мышьяка. Свинец известен как заменитель цинка в ряде ферментов, в том числе дегидратазы δ-аминолевулиновой кислоты (англ. δ-aminolevulinic acid dehydratase ) в биосинтезе гема, который важен для правильного метаболизма ДНК, следовательно может вызывать ущерб плоду матери.

Источник

Читайте также:  Нитрат свинца йодид калия молекулярное уравнение