Сварка высоколегированных сталей применяемые электроды

Сварка высоколегированных сталей применяемые электроды

§ 79. Сварка высоколегированных сталей и сплавов

Высоколегированными называют стали, содержащие один или несколько легирующих элементов в количестве 10 — 55%.

Высоколегированными называют сплавы на железоникелевой основе (железа и никеля содержится более 65%) и на никелевой основе (никеля содержится более 55%).

По ГОСТ 5632 — 72 насчитывается 94 марки высоколегированных стилей и 22 марки высоколегированных сплавов. Несколько марок сталей и сплавов выпускается по различным техническим условиям.

Высоколегированные стали и сплавы классифицируют по различным признакам, главным образом, по системе легирования, структуре и свойствам. По системе легирования высоколегированные стали делят, например, на хромистые, хромоникелевые, хромомарганцевые, хромоникелемарганцевые, хромомарганцеазотистые. Самые распространенные высоколегированные сплавы — никелевые, никелехромистые, никелехромовольфрамовые и никелехромокобальтовые.

По структуре высоколегированные стали подразделяют на стали мартенситного класса (например, 15X5, 15Х5М, 15Х5ВФ, 09Х16Н4Б, 11Х11Н2В2МФ — всего по стандарту 20 марок), мартенситно-ферритного класса (15Х6СЮ, 15Х12ВНМФ, 12X13 и др.), ферритного класса (08X13, 10Х13СЮ, 12X17, 15Х25Т), аустенитно-мартенситного класса (такие, как 07Х16Н6, 08Х17Н5МЗ), аустенитно-ферритного класса (например, 08Х20Н14С2, 08Х18Г8Н2Т) и аустенитного класса (03Х17Н14М2, 03Х16Н15МЗБ, 08Х10Н20Т2, 08Х16Н13М2Б, 09Н16Х14Б, 09Н19Х14В2БР, 12Х18Н9, 12Х18Н9Т, 45Х14Н14В2М). В некоторых аустенитных сталях никель, как дефицитный материал, частично или полностью заменяют марганцем и азотом: 10Х14Г14НЗ, 10Х14Г14Н4Т, 12Х17Г9Н4А, 10Х14Г15А, 15Х17Г14А; всего по ГОСТ 5632-72 выпускается 27 марок аустенитных сталей.

По системе упрочнения высоколегированные стали и сплавы делят на карбидные, содержание углерода 0,2 — 1,0%, боридные (образуются бориды железа, хрома, ниобия, углерода, молибдена и вольфрама), с интерметаллидным упрочнением (упрочнение мелкодисперсными частицами).

По свойствам высоколегированные стали и сплавы подразделяют на коррозионностойкие (нержавеющие), обладающие стойкостью против любой коррозии — атмосферной, почвенной, щелочной, кислотной, солевой, межкристаллитной; жаростойкие (окалиностойкие), не окисляющиеся при высоких температурах нагрева (до 1300°С); жаропрочные, способные работать при температурах свыше 1000°C в течение нормированного времени без снижения прочности.

Особенности сварки высоколегированных сталей и сплавов. По сравнению с низкоуглеродистыми сталями большинство высоколегированных сталей и сплавов обладают пониженным коэффициентом теплопроводности (до 2 раз при повышенных температурах) и увеличенным коэффициентом линейного расширения (до 1,5 раза).

Низкий коэффициент теплопроводности приводит при сварке к концентрации тепла и вследствие этого к увеличению проплавления металла изделия. Поэтому для получения заданной глубины проплавления следует снижать величину сварочного тока на 10 — 20%.

Увеличенный коэффициент линейного расширения приводит при сварке к большим деформациям сварных изделий, а в случае значительной жесткости — относительно крупные изделия, повышенная толщина металла, отсутствие зазора между свариваемыми деталями, жесткое закрепление изделия — к образованию трещин в сварочном изделии.

Высоколегированные стали и сплавы более склонны к образованию трещин, чем низкоуглеродистые. Горячие трещины появляются большей частью в аустенитных сталях, холодные — в закаливающихся сталях мартенситного и мартенситно-ферритного классов. Кроме этого, коррозионностойкие стали, не содержащие титана или ниобия или легированные ванадием, при нагревании выше 500°С теряют антикоррозионные свойства по причине выпадения из твердого раствора карбидов хрома и железа, которые становятся центрами коррозии и коррозионного растрескивания. Термической обработкой (чаще всего закалкой) можно восстановить антикоррозионные свойства сварных изделий. Нагревом до 850°С ранее выпавшие из раствора карбиды хрома вновь растворяются в аустените, а при быстром охлаждении они не выделяются в отдельную фазу. Такой вид термообработки называют стабилизацией. Однако стабилизация приводит к снижению пластичности и вязкости стали. Получение высокой пластичности, вязкости и одновременно анти-коррозийности сварных соединений возможно нагревом металла до температуры 1000 — 1150°С и быстрым охлаждением в воде (закалка).

Содержание углерода в основном металле и металле шва до 0,02 — 0,03% полностью исключает выпадение карбидов хрома, а следовательно, межкристаллитную коррозию.

На практике нашли применение следующие пути предотвращения трещин при сварке высоколегированных сталей: создание в металле шва двухфазной структуры (аустенит и феррит); ограничение в шве содержания вредных примесей (серы, фосфора, свинца, сурьмы, олова, висмута) и введение таких элементов, как молибден, марганец, вольфрам; применение электродных покрытий основного и смешанного видов; создание при сварке менее жесткого состояния изделия.

Практикой сварки аустенитной стали установлено, что с увеличением жесткости при выполнении шва необходимо к аустениту прибавлять феррита в количестве от 2 до 10%. В этом случае пластичность металла шва по сравнению с аустенитным швом повышается и усадка даже при жестком состоянии сварного изделия происходит за счет повышенной пластической деформации металла шва без образования трещин.

Применение электродов с основным или смешанным покрытием с легированием металла шва молибденом, марганцем, вольфрамом придает металлу шва мелкозернистое строение. В этом случае пластические свойства металла возрастают и при усадке горячие трещины в нем не возникают.

Для получения сварных соединении без трещины в процессе сварки рекомендуется свариваемые детали собирать с зазором (рис. 102) и по возможности применять швы с низким проваром (коэффициент формы провара должен быть менее 2). Швы лучше выполнять тонкими электродами диаметром 1,6 — 2,0 мм при минимальной погонной тепловой энергии.


Рис. 102. Влияние коэффициента формы провара (а, б) и зазора в корне шва (в, г) на стойкость аустенитного углового шва против образования кристаллизационных трещин марок высоколегированных сталей и сплавов должен быть строго обоснован

Сварные соединения с неоднородным швом как после сварки, так и после термической обработки обладают меньшей прочностью по сравнению с основным металлом. Кроме того, в так их неоднородных сварных соединениях при эксплуатации с высоким нагревом наблюдаются диффузионные явления между металлом шва и околошовным металлом для выравнивания химического состава, что приводит к появлению холодных трещин в околошовном металле, в зоне металлической связи. Поэтому выбор типа электрода при дуговой сварке различных

Читайте также:  Коптильня кедр нерж сталь

Подогрев (общий или местный) до температуры 100 — 300°С рекомендуется при сварке всех высоколегированных сталей и сплавов в зависимости от характера микроструктуры основного металла, содержания углерода, толщины и жесткости изделия. Для мартенситных сталей и сплавов подогрев изделия обязателен; для аустенитных сталей он применяется редко. Подогрев способствует более равномерному распределению температур по изделию в процессе сварки и охлаждению с меньшими скоростями, в результате чего не образуются концентрированные усадочные деформации по сечению сварного соединения и трещины не возникают.

Перегрев (укрупнение зерен) металла шва и околошовного металла при сварке высоколегированных сталей и сплавов зависит от химического состава и микроструктуры, температуры нагрева и длительности пребывания металла при высокой температуре. Обычно при сварке больше перегреваются однофазные ферритные стали.

Высоколегированные стали, содержащие углерода более 0,12% (31Х19Н9МВБТ, 36Х18Н25С2, 55Х20Г9АН4, 17Х18Н9 и др.) свариваются с предварительным подогревом до 300°С и выше с последующей термической обработкой сварных изделий.

Сварочная проволока, виды электродных покрытии и типы покрытых электродов для сварки. Для сварки высоколегированных сталей с особыми свойствами применяют сварочную проволоку, например Св-04Х19Н9, Св-05Х19Н9Ф3С2, Св-06Х19Н9Т, Св-07Х19Н10Б, Св,08Х20Н9С2БТЮ, Св-10Х16Н25М6А — всего 41 марка по ГОСТ 2246 — 70.

Электроды берут с основными, рутилоосновными и рутилофлюоритноосновными покрытиями. Дуговая сварка аустенитных сталей электродами с основным покрытием приводит к науглероживанию металла шва, что вызывает снижение стойкости его против межкристаллитной коррозии. Науглероживание происходит за счет разложения мрамора, который содержится в большом количестве в этом покрытии. Науглероживание металла шва исключается при сварке аустенитной стали электродами с рутилоосновным покрытием (например, ОЗЛ-14), содержащего мрамора только 10% вместо 35 — 45% в электродах с основным покрытием (например, УОНИИ-13/НЖ).

Ориентировочный выбор марки сварочной проволоки, вида покрытия и типа электрода при дуговой сварке высоколегированных сталей и сплавов в зависимости от назначения сварного изделия приведен в табл. 38.


38. Примерный выбор покрытых электродов для сварки высоколегированных сталей с особыми свойствами

ГОСТ 10052 — 75 предусматривает 49 типов покрытых электродов для ручной дуговой сварки высоколегированных сталей с особыми свойствами, например, Э-02Х19Н9Б, Э-04Х20Н9, Э-07Х20Н9, Э-06Х22Н9, Э-06Х13Н, Э-08Х20Н9Г2Б, Э-08Х14Н65М15В4Г2, Э-10Х20Н70Г2М2В.

Каждый тип электрода включает одну или несколько марок покрытых электродов.

Условное обозначение электродов для дуговой сварки выполняется по ГОСТ 9466 — 75 (см. гл. V). При этом во второй строке условного обозначения электродов группа индексов, указывающих характеристики наплавленного металла и металла шва, состоит из четырех цифровых индексов для электродов, обеспечивающих аустенитно-ферритную структуру наплавленного металла, и из трех цифровых индексов — для остальных электродов.

Первый индекс показывает стойкость наплавленного металла и металла шва против межкристаллитной коррозии (в зависимости от метода испытания в табл. 3 стандарта приняты индексы от 0 до 5). Второй индекс указывает максимальную рабочую температуру, при которой обеспечивается относительно длительная прочность наплавленного металла и металла шва (по табл. 4 в стандарте введены цифровые индексы от 0 до 9). Третий индекс показывает допускаемую рабочую температуру сварных соединений, выполненных данными электродами при сварке жаростойких сталей (см. табл. 5). Четвертый индекс указывает содержание ферритной фазы в наплавленном металле для электродов, обеспечивающих аустенитно-ферритную структуру наплавленного металла (см. табл. 6).

Все данные, необходимые для составления группы индексов, берутся из паспортов на электроды конкретных марок.

Газовая сварка аустенитных сталей производится пламенем мощностью 70 — 75 дм 3 ацетилена/ч на 1 мм толщины металла. Окислительное пламя не допускается, так как оно влечет выгорание хрома. Для присадки применяют сварочную проволоку марок Свт02Х19Н9Т, Св-08Х19Н10Б и других с минимальным содержанием углерода, легированную ниобием или титаном. Тем не менее, при газовой сварке титан почти полностью выгорает и не может обеспечить стойкость металла шва против межкристаллитной коррозии. Кроме этого, нержавеющие стали при температурах нагрева 500 — 850°С с низкими скоростями охлаждения, которые сопутствуют газовой сварке, выделяют по границам зерен карбиды хрома, являющиеся центрами коррозии металла.

Диаметр проволоки выбирают приблизительно равным толщине основного металла при толщине листов 1 — 6 мм.

При сварке в большинстве случаев пользуются флюсами, например, марки НЖ-8 такого состава: 28% мрамора, 30% фарфора, 10% ферромарганца, 6% ферросилиция, 6% ферротитана и 20% двуокиси титана. Флюс разводится на жидком стекле и наносится на кромки деталей в виде пасты. Сварка производится после высыхания флюса.

Сварка двухслойных сталей. Двухслойные стали состоят чаще всего из низкоуглеродистой стали и покрывающего ее слоя коррозионно-стойкой стали. В качестве антикоррозионного слоя применяют аустенитные стали марок 08Х18Н10Т, 08Х17Н13МЗТ и подобных им. Дуговая сварка двухслойной стали по технике выполнения швов аналогична сварке однослойного металла. Чаще всего шов выполняется вначале со стороны углеродистой стали, затем наплавленный металл со стороны плакирующего слоя зачищается и сваривается уже плакирующий слой. Электроды по химическому составу должны быть однородны с металлом плакирующего, например для стали 08Х17Н16МЗТ применяют электроды с покрытием марки НЖ-16 и проволоку марки Св-06Х19Н10МЗТ. Для сварки аустенитными электродами применяют постоянный ток обратной полярности.

1. Что такое свариваемость металлов?

Читайте также:  Почему стали строить высотные дома

2. Как следует разрабатывать технологию на сварку углеродистых сталей в зависимости от содержания в них углерода?

3. Каковы особенности сварки низколегированных сталей?

4. Что такое разупрочнение при сварке термически обработанной стали?

5. Как нужно подбирать покрытые электроды для сварки аустенитных сталей?

Источник

Легированные стали и особенности их сварки

Легированными называются стали, которые в своем составе содержат легирующие элементы, придающие сталям специальные свойства. Основные легирующие элементы — это хром, марганец, никель, кремний, молибден, вольфрам и другие. Легирование делается с целью изменения строения металла и придания ему определенных физико-механических свойств. Легированием можно повысить коррозионностойкость материала, его твердость, износостойкость и так далее. Ниже будут рассмотрены особенности сварки легированных сталей.

Легированные стали бывают трех видов. Это низколегированные, в которых содержание легирующих элементов не более 2,5% , среднелегированные — с содержанием 2,5% — 10% и высоколегированные — более 10%. В зависимости от присутствующих в составе материала легирующих элементов они называются хромистыми, ванадиевыми, хромоникелевыми и так далее. Каждый такой элемент в маркировке стали обозначается специальными буквами: Х — хром, М -молибден, В — вольфрам, Г — марганец, К — кобальт, Ю — алюминий, С — кремний, Н — никель, Т — титан, Ф — ванадий, Б — ниобий, А — азот, Р — бор. Легированные стали подразделяются на следующие типы: нержавеющие, жаростойкие, кислотостойкие и окалиностойкие, которые и определяют сферу применения каждой конкретной стали.

Низколегированные стали

Низколегированные стали должны обладать хорошей пластичностью, удовлетворительной свариваемостью и высокой сопротивляемостью хрупкому разрушению. Оптимальные механические свойства они приобретают после закалки или нормализации и последующего высокого отпуска. Примеры низколегированных сталей — 14Г2, 14ХГС, 15ГС и другие. Они характеризуются малым содержанием углерода ( Технология сварки низколегированных металлов

Основными показателями свариваемости низколегированных сталей являются сопротивляемость сварных соединений холодным трещинам и хрупкому разрушению. Такие металлы обычно имеют ограниченное содержание C, Ni, Si, S и P, поэтому при соблюдении режимов сварки и правильном применении присадочных материалов горячие трещины отсутствуют. Критериями при определении диапазона режимов выполнения сварочных работ и температур предварительного подогрева служат допустимые максимальная и минимальная скорости охлаждения металла околошовной зоны. Максимально допустимые скорости охлаждения принимаются таким образом, чтобы предотвратить образование холодных трещин в металле околошовной зоны.

Химический состав сплавов

Электроды для сварки низколегированных сталей ручной дуговой сваркой имеют низководородное фтористо-кальциевое покрытие. Широко применяют электроды типа Э70 по ГОСТ 9467-75. Сварку выполняют постоянным током при обратной полярности. Металл, наплавленный электродами, должен соответствовать следующему химическому составу, %: С до 0,10 ; Mn 0.8…1,2 ; Si 0,2…0.4 ; Cr 0,6…1,0 ; Mo 0,2…0.4 ; Ni 1,3…1,8 ; S до 0,03 ; Р до 0,03. Сварочный ток выбирают в зависимости от марки и диаметра электрода, при этом учитывают положение шва в пространстве, вид соединения и толщину свариваемого металла. Сварку технологических участков нужно производить без перерывов, не допуская охлаждения сварного соединения ниже температуры предварительного подогрева и нагрева его перед выполнением следующего прохода выше 200С°.

Особенности сварки низколегированных сталей под флюсом заключаются в её проведении на постоянном токе обратной полярности. Сила тока при этом не должна превышать 800 А, напряжение дуги — не более 40 В, скорость сварки изменяют в пределах 13…30 м/ч. Одностороннюю однопроходную сварку применяют для соединений толщиной до 8 мм и выполняют на остающейся стальной подкладке или флюсовой подушке. Максимальная толщина соединений без разделки кромок, свариваемых двусторонними швами, не должна превышать 20 мм. Для стыковых соединений без скоса кромок (односторонних или двусторонних) используют проволоку марки Св-08ХН2М, так как швы в этом случае имеют излишне высокую прочность и применение более легированной проволоки для таких соединений нецелесообразно.

Влияние легирующих элементов на структуру и свойства металлов

Если сварка низкоуглеродистых и низколегированных сталей осуществляется в углекислом газе, то в качестве электрода применяют проволоку марок Св-08Г2С, Св-10ХГ2СМА, Св-08ХН2Г2СМЮ (ГОСТ 2246-70) или порошковую проволоку. При сварочных работах в смесях на основе аргона используют проволоку марки Св-08ХН2ГМЮ, которая обеспечивает высокий уровень механических свойств и хладостойкость металлических швов при сварке сталей с прочностью до 700 МПа. Проволоки указанных марок рекомендуются и для сварки угловых швов с катетом свыше 15 мм. Для угловых швов с меньшим катетом в большинстве случаев используют проволоку марки Св-08Г2С. Эту проволоку также применяют при сварке низкоуглеродистых и низколегированных сталей повышенной прочности 09Г2, 10Г2С1, 14Г2, 10ХСНД и 15ХСНД.

Газовая сварка низколегированных сталей характеризуется повышенным разогревом свариваемых кромок, пониженной коррозионностойкостью и усиленным выгоранием легирующих примесей. Это приводит к ухудшению качества сварных соединений по сравнению с другими способами сварки. При газовой сварке в качестве присадочного материала используют проволоку марок СВ-10Г2, Св-08, Св-08А, а для ответственных швов — Св-18ХГС и Св-18ХМА. Механические свойства шва можно повысить проковкой при температуре 800 °С — 850°С с последующей нормализацией.

Среднелегированные стали

Среднелегированные стали содержат углерод в количестве от 0,4% и более. Они легированы в основном Ni, Mo, Cr, V, W. Оптимальное сочетание прочности, вязкости и пластичности достигается после закалки и низкого отпуска. Такие среднелегированные стали, как ХВГ, ХВСГ, 9ХС, пользуются большим спросом за счет своих легирующих добавок при изготовлении сверл, разверток и протяжек.

Эти стали выплавляют из чистых шихтовых материалов для повышения пластичности и вязкости. Также их тщательным образом очищают от фосфора, серы, газов и различных неметаллических включений. В этом случае стали могут подвергаться электрошлаковому или вакуумно-дуговому переплаву, рафинированию в ковше жидкими синтетическими шлаками. Хорошее сочетание прочности, вязкости и пластичности среднелегированных сталей достигается термомеханической обработкой.

Читайте также:  Для чего нужна инструментальная углеродистая сталь

Технология сварки среднелегированных металлов

Чтобы обеспечить эксплуатационную надежность сварных соединений, нужно при выборе сварочных материалов стремиться к получению швов такого химического состава, при котором их механические свойства имели бы требуемые значения. Степень изменения этих свойств зависит от доли участия основного металла в формировании шва. Поэтому следует выбирать такие сварочные материалы, которые содержат легирующих элементов меньше, чем основной металл. Легирование металла шва за счет основного металла позволяет повысить свойства шва до необходимого уровня.

При сварке среднелегированных глубокопрокаливающихся высокопрочных сталей нужно выбирать такие сварочные материалы, которые обеспечат получение швов, обладающих высокой деформационной способностью при минимально возможном количестве водорода в сварочной ванне. Это достигается применением низколегированных сварочных электродов, не содержащих в покрытии органических веществ и подвергнутых высокотемпературной прокалке. Одновременно при выполнении сварочных работ следует исключить другие источники насыщения сварочной ванны водородом (влага, ржавчина и другие).

Для сварки среднелегированных сталей широко применяются аустенитные сварочные материалы. Для механизированной сварки и изготовления стержней электродов в ГОСТ 2246-70 предусмотрены проволоки марок Св-08Х20Н9Г7Т и Св-08Х21Н10Г6, а в ГОСТ 10052-75 — электроды типа ЭА-1Г6 и др. Электродные покрытия применяются вида Ф, а для механизированной сварки — основные флюсы. Для сварки среднелегированных высокопрочных сталей используют электроды типов Э-13Х25Н18, Э-08Х21Н10Г6 и другие по ГОСТ 10052-75 и ГОСТ 9467-75.

Высокое качество сварных соединений толщиной 3…5 мм достигается при аргонодуговой сварке неплавящимся электродом. При этом для увеличения проплавляющей способности дуги применяют активирующие флюсы (АФ). Сварка с АФ эффективна при механизированных способах для получения равномерной глубины проплавления. Неплавящийся электрод при сварке с АФ выбирают из наиболее стойких в эксплуатации марок активированного вольфрама.

Газовая сварка легированных сталей осуществляется ацетиленокислородом, который обеспечивает качественный сварной шов. Газы-заменители в данном случае применять не рекомендуется. Но даже ацетиленокислород не может стопроцентно гарантировать получение качественного шва. Этого можно достичь только путем применения дуговой сварки.

Закалка стали — обязательный этап в машиностроении, так как от правильности его выполнения зависит качество продукции. Подробнее читайте в этой статье.

Высоколегированные стали

Высоколегированные стали имеют повышенно содержание легирующих элементов — Cr и Ni (обычно не ниже 16% и 7% соответственно). Они придают таким металлам соответствующую структуру и необходимые свойства. Высоколегированные стали по сравнению с менее легированными обладают высокой хладостойкостью, коррозионностойкостью, жаропрочностью и жаростойкостью. Несмотря на высокие свойства этих сталей, их основное служебное назначение определяет соответствующий подбор состава легирования. В соответствии с этим их можно разделить на три группы: жаростойкие, жаропрочные и коррозионностойкие.

После соответствующей термообработки высоколегированные стали обладают высокими прочностными и пластическими свойствами. В отличие от углеродистых при закалке эти материалы приобретают повышенные пластические свойства.

Структуры высоколегированных сталей очень разнообразны и зависят в основном от их химического состава, то есть от содержания основных элементов: хрома (ферритизатора) и никеля (аустенитизатора). Также на структуру влияет содержание других легирующих элементов-ферритизаторов (Mo, Ti, Si, Al, W, V) и аустенизаторов (Co, Cu, C, B).

Технология сварки высоколегированных металлов

Высоколегированные стали обладают комплексом положительных свойств. Поэтому одну и ту же марку иногда можно использовать для изготовления изделий различного назначения. В связи с этим и требования к свойствам сварных соединений будут индивидуальными. Это определит и различную технологию выполнения сварочных работ, направленную на получение сварного соединения с необходимыми свойствами, определяемыми составом металла шва и его структурой.

Легирующие элементы – обозначение

Особенности сварки высоколегированных сталей определяются наличием у них характерных теплофизических свойств. Пониженный коэффициент теплопроводности сильно изменяет распределение температур в шве и околошовной зоне. Это увеличивает глубину проплавления основного металла, а с учетом повышенного коэффициента теплового расширения возрастает и коробление изделий. Поэтому для уменьшения коробления нужно применять способы и режимы, отличающиеся максимальной концентрацией тепловой энергии.

При ручной дуговой сварке высоколегированных сталей сварочные проволоки одной по ГОСТу марки имеют широкий допуск по химическому составу. Применением электродов с фтористокальциевым покрытием достигается получение металла шва с нужным химическим составом. Тип покрытия электродов для данной сварки диктует необходимость применения тока обратной полярности. Тщательная прокалка электродов способствует уменьшению вероятности образования в швах пор и вызываемых водородом трещин.

Газовая сварка высоколегированных сталей наименее благоприятна, для соединения этих кислотостойких сталей, которые подвержены значительной межкристаллитной коррозии. Такая сварка может использоваться для сваривания жаропрочных и жаростойких сталей толщиной 1…2 мм. Сварка ведется нормальным пламенем мощностью 70…75 л/ч на 1 мм толщины. В сварных соединениях могут образовываться большие коробления.

Сварка под флюсом высоколегированных сталей толщиной 3…50 мм имеет большое преимущество перед ручной дуговой сваркой ввиду стабильности состава и свойств металла по всей длине шва. Это достигается отсутствием частых кратеров, образующихся при смене электродов, равномерностью плавления электродной проволоки и основного металла по длине шва, а также более надежной защитой зоны сварки от окисления легирующих компонентов кислородом воздуха.

При сварке под флюсом уменьшается трудоемкость подготовительных работ, так как разделку кромок выполняют на металле толщиной свыше 12 мм (при ручной сварке — свыше 3…5 мм). Типы флюсов предопределяют их использование для сварки постоянным током обратной полярности.

Источник