Температура плавления олово свинец цинк

Температура плавления олово свинец цинк

§ 34. Легкоплавкие металлы и их сплавы

Цинк и его сплавы

Цинк имеет плотноупакованную гексагональную структуру с периодами решетки а = 0,26595 нм, с = 0,49368 нм. Аллотропических превращений цинк не испытывает. Температура плавления 419°С. Плотность при комнатной температуре 7,14 г/см 3 . Цинк отличается достаточно хорошей коррозионной стойкостью в атмосферных условиях и в пресной воде и поэтому его широко используют для защитных покрытий кровельного железа и изделий из него (ведра, баки). Цинк, как и все металлы с гексагональной структурой, обладает ярко выраженной анизотропией свойств. Это проявляется в различии механических и физических свойств по разным направлениям в кристаллах и в деформированных полуфабрикатах, в которых при деформировании возникает текстура. При деформировании цинка в металле происходит скольжение по плоскости базиса. При этом кристаллы поворачиваются так, что плоскость базиса становится параллельной направлению главной деформации.

Основные естественные примеси в цинке — свинец, железо, кадмий, олово. Свинец практически нерастворим в твердом цинке. Эти металлы образуют две несмешивающиеся жидкости вплоть до температуры 798°С. Диаграмма состояния системы цинк — свинец подобна диаграмме, изображенной на рис. 20. Монотектическая реакция проходит при 418°С. При температуре 318°С происходит эвтектическая реакция, и жидкость распадается на почти чистые металлы. При быстром охлаждении сплавов цинка со свинцом удается получить равномерное распределение свинца в виде округлых включений по границам зерен. Свинец в отсутствие других примесей не уменьшает пластичности цинка, однако, обладая электропотенциалом, сильно отличающимся от потенциала цинка, увеличивает склонность цинка к коррозии. Это свойство используется в процессе изготовления типографских клише, для которых применяют цинк, содержащий около 1% Рb. Такой металл очень легко растворяется в кислоте, а именно на этом и основано создание рисунка на клише.

Примесь железа повышает твердость цинка и задерживает процесс рекристаллизации. Уже при очень незначительном содержании железа (менее 0,001%) в цинке образуется хрупкая фаза в виде соединения FeZn7. Олово — вредная примесь, так как практически не растворяясь в цинке, образует с ним легкоплавкую эвтектику (198°С), которая, откладываясь по границам зерен, делает невозможным обработку давлением при повышенных температурах, вызывая горячеломкость. При совместном содержании олова и свинца образуется еще более легкоплавкая эвтектика (150°С).

Основная масса чистого цинка в виде листов расходуется на изготовление малогабаритных источников постоянного тока. Кроме упоминавшегося сплава цинка с 1% Рb, широкое применение имеют его сплавы с алюминием (3,5 — 4,5%), медью (0,5 — 3,5%) и магнием (0,1%). Эти сплавы, обозначаемые ЦАМ, предназначены для получения фасонных отливок литьем под давлением. Они достаточно легкоплавки, жидкотекучи и в условиях литья под давлением дают отливки, которые не требуют дополнительной обработки поверхности. Из диаграммы состояния алюминий — цинк (см. рис. 57) следует, что сплавы, содержащие до 5% А1, должны кристаллизоваться с образованием первичных кристаллов твердого раствора алюминия в цинке и эвтектики α1+Zn, причем фаза α1 при температуре 275°С должна распадаться на α+Zn. Однако этот эвтектоидный распад не успевает проходить в процессе охлаждения и идет при эксплуатации изделий при 20 — 100°С. В результате изделия из сплавов цинк — алюминий медленно изменяют свои размеры («растут»), что совершенно недопустимо. Небольшая добавка магния практически нацело подавляет эвтектоидный распад и делает отливки стабильными по размерам.

Деформируемые цинковые сплавы также легированы алюминием (до 15%), медью (до 5%) и магнием (0,03%). Эти сплавы обладают механическими свойствами, близкими к свойствам латуней, но значительно дешевле их. Так, сплав ЦАМ10-5 (10% А1, 5% Сu, 0,05% Mg) имеет следующие механические свойства: σв = 300÷400 МПа, δ = 12÷8%, НВ (95 — 100).

К сожалению, все цинковые сплавы быстро корродируют на воздухе, поэтому нуждаются в защите от коррозии. Наиболее распространено защитно-декоративное хромирование изделий из цинковых сплавов. Тысячные доли процента примесей олова, свинца и кадмия вызывают очень быстрое разрушение цинковых сплавов вследствие межкристаллитной коррозии, особенно во влажной атмосфере при 50 — 90°С.

Олово, свинец и их сплавы

Олово плавится при 232°С, имеет две модификации: β-модификацию (белое олово), устойчивую выше 13°С с объемноцентрированной тетрагональной решеткой, и α-модификацию с кубической решеткой типа алмаза (серое олово). Переход белого олова в серое сопровождается большим изменением объема, так что происходит рассыпание металла в порошок. Это явление носит название «оловянная чума». Из-за склонности олова к переохлаждению самопроизвольный переход в α-олово происходит при очень низких температурах (-20÷-30°С). Однако начавшееся превращение идет и при более высоких температурах, поэтому оловянные изделия необходимо предохранять от действия морозов. Чем чище олово, тем больше оно подвержено заболеванию «чумой». Примеси висмута и сурьмы, в меньшей степени свинца и кадмия, задерживают аллотропическое превращение. Достаточно в олово добавить 0,5% висмута или сурьмы, чтобы снизить скорость превращения практически до нуля и сделать белое олово абсолютно устойчивым.

Свинец имеет температуру плавления 327°С, обладает гранецентрированной кубической решеткой, аллотропических превращений не испытывает. Плотность свинца при комнатной температуре 11,34 г/см 3 .

Рекристаллизация наклепанных олова и свинца происходит при температурах ниже комнатной, поэтому их обработка при комнатной температуре является горячей обработкой. Чистые олово и свинец отличаются высокой коррозионной стойкостью в атмосферных условиях. Свинец стоек в концентрированных растворах некоторых кислот (серной, фосфорной, плавиковой), олово — в растворах пищевых кислот (молочной, масляной). Олово широко применяется для лужения жести, а свинец для футеровки аппаратуры сернокислотного производства, а также для защитных оболочек электрокабелей. Специфическая область применения свинца — пластины электрических аккумуляторов, получаемые литьем в металлические формы. Олово и свинец между собой и с другими легкоплавкими металлами (висмутом, кадмием) дают еще более легкоплавкие сплавы, которые широко применяются в качестве припоев, для отливки типографских шрифтов, для изготовления плавких предохранителей и т. д. Системы олово — свинец, свинец — висмут, свинец — кадмий, олово — висмут, олово — кадмий являются простыми системами эвтектического типа, при этом эвтектики плавятся при 120 — 190°С. В тройных системах этих металлов образуются еще более легкоплавкие тройные эвтектики (92 — 96°С). Достаточно хорошо изучена четверная система свинец — висмут — олово — кадмий, в которой образуется четверная эвтектика, плавящаяся при 70°С и известная в технике и научных исследованиях как сплав Вуда (50% Bi; 25% Pb; 12,5% Sn; 12,5% Cd). Для получения еще более низкой точки плавления в состав сплавов вводят индий или ртуть. Так, для анатомических слепков применяют сплав, содержащий 53,5% Bi; 19% Sn; 17% Pb; 10,5% Hg и затвердевающий при 60°С.

Читайте также:  Зачем заливают сварные швы оловом

В качестве припоев в основном используют сплавы системы олово — свинец с небольшим количеством сурьмы (до 2%) Для улучшения растекания припоя. Температура их плавления зависит от соотношения олова и свинца. Самый легкоплавкий (190°С ) припой ПОС-61 близок по составу к эвтектической точке. Типографские свинцовые сплавы, применяемые для отливки шрифтов, стереотипов и т. д., основаны на системе свинец — сурьма (10 — 25% Sb) с добавками олова (4 — 7%).

Очень важная область применения олова и свинца — подшипниковые сплавы, носящие специальное название «баббиты». Эти сплавы используют для заливки вкладышей подшипников. Материал вкладыша подбирают таким образом, чтобы он мог приработаться к валу. Таким требованиям на первый взгляд удовлетворяют мягкие пластичные металлы: олово, свинец, алюминий. Однако в паре со стальным валом они имеют слишком большой коэффициент трения, сильно разогреваются при работе и налипают на шейку вала («схватываются»). Коэффициент трения в паре вал — вкладыш оказывается тем меньше, чем тверже вкладыш. Таким образом, материал вкладыша должен быть и твердым, и мягким одновременно. Этим требованиям удовлетворяют двухфазные или многофазные сплавы, структура которых состоит из твердых изолированных кристаллов, распределенных в пластичной основе. Назначение твердых кристаллов — осуществлять непосредственный контакт с вращающимся валом, назначение пластичной основы — обеспечивать прирабатываемость вкладыша к валу. Количество твердой составляющей должно быть небольшим, чтобы твердые и хрупкие кристаллы не соприкасались между собой. Кроме того, они должны быть равномерно распределены в пластичной основе. Подобную структуру имеют сплавы на оловянной основе, содержащие до 12% Sb и до 6,5% Сu. Представление об их структуре можно получить по диаграмме состояния системы олово — сурьма (рис. 70).


Рис. 70. Диаграмма состояния системы олово — сурьма

Составы сплавов лежат в двухфазной α+β-области. Кристаллы β-фазы, обогащенные сурьмой, являются твердой хрупкой фазой, а кристаллы α-фазы образуют мягкую пластичную основу. Чтобы предотвратить ликвацию кристаллов β-фазы, которые легче расплава и всплывают в ходе кристаллизации, в сплав вводят медь. Медь с оловом образует фазу Сu3Sn. Кристаллы этой фазы выпадают первыми и образуют скелет, препятствующий всплыванию кристаллов β-фазы. Классическим подшипниковым сплавом этого типа является баббит Б83 (83% Sn; 11% Sb; 6% Сu).

Подшипниковые сплавы на основе олова довольно дороги, а содержащееся в них олово — дефицитно, поэтому разработаны подшипниковые сплавы на основе свинца с добавками сурьмы (16 — 18%) и меди (до 3%). Сурьма в этих сплавах выделяется в виде правильно ограненных первичных кристаллов, которые являются твердой составляющей, а мягкой основой служит эвтектика свинец — сурьма. Медь образует соединение Cu2Sb, которое также препятствует всплыванию кристаллов сурьмы. Эвтектика свинец — сурьма менее пластична, чем α-фаза в оловянных баббитах, поэтому свинцовые сплавы сильнее изнашиваются, чем оловянные. Для повышения их пластичности в них добавляют олово (до 16%). Кроме того, для улучшения антифрикционных свойств вводят никель, кадмий, мышьяк (до 1%).

Помимо перечисленных сплавов, в качестве подшипникового материала широко применяют так называемый кальциевый баббит (в основном, на железнодорожном транспорте) — сплав на основе свинца с добавками 0,85 — 1,15% Са и 0,6 — 0,9% Na. В этом сплаве кальций образует первичные кристаллы Рb3Са, а натрий — твердый раствор в свинце, повышая его твердость.

Источник

Температура плавления олово свинец цинк

Олово — блестящий белый металл, обладающий низкой температурой плавления (231°С) и высокой пластичностью. Применяется в составе припоев, медных сплавов (бронза) и антифрикционных сплавов (баббит).
Свинец — металл голубовато-серого цвета, обладает низкой температурой плавления (327°С) и высокой пластичностью. Входит в состав медных сплавов (латунь, бронза), антифрикционных сплавов (баббит) и припоев.
Цинк — серовато-белый металл с высокими литейными и антикоррозионными свойствами, температура плавления 419°С. Входит в состав медных сплавов (латунь) и твердых припоев.
Припои. Припой — это металлы или сплавы, используемые при пайке в качестве связки (промежуточного металла) между соединяемыми деталями. Припои имеют более низкую температуру плавления, чем соединяемые металлы. Незначительный нагрев соединяемых металлов, а вследствие этого отсутствие изменения структуры металла, являются основным преимуществом пайки в сравнении со сваркой.
По температуре расплавления припои (табл. 14) подразделяют на легкоплавкие (145-450°С), среднеплавкие (450-1100°С) и высокоплавкие (1100-1850°С). К легкоплавким относят оловянно-свинцовые (ПОС), оловянные, малосурьмянистые и сурьмянистые (ПОССу) и другие припои; медно-цинковые (латуни) относят к среднеплавким (905-985°С), а многокомпонентные на основе железа — к высокоплавким (1190-1480°С).
Оловянно-свинцовые припои широко применяют во всех отраслях промышленности. Для снижения охрупчивания олова при низких температурах в состав припоев вводят сурьму. Оловянно-свинцовые припои имеют низкую коррозионную стойкость во влажной среде. В этих условиях паяные соединения необходимо защищать лакокрасочными покрытиями.
Оловянные припои имеют высокую прочность, пластичность и коррозионную стойкость. Их применяют при пайке радиотехнической и электронной аппаратуры.
Медно-цинковые припои (латуни) широко применяют для пайки большинства металлов (табл. 15). Для повышения прочности паяных соединений в медно-цинковые припои вводят олово, никель и марганец. Добавки олова понижают температуру плавления латуни, повышают коррозионную стойкость и улучшают жидкотекучесть припоя.

Читайте также:  Как залудить металл оловом

При пайке сложных изделий со швами на вертикальной стенке применяют пастообразные и порошковые припои. Легкоплавкие пастообразные припои состоят обычно из трех частей: порошкообразного припоя, флюса и загустителя. Так, пасту состава: припой ПорПОССу-30-2 (70%), вазелин (20%), бензойная кислота (1,2%), аммоний хлористый (1,2%) и эмульгатор ОП-7 (0,6%) — применяют для пайки стальных, медных и никелевых изделий.

Тугоплавкие порошкообразные припои применяют для пайки твердосплавных пластин при производстве режущего инструмента. Состав припоя: ферромарганец (40%), ферросилиций (10%), чугунная стружка (20%), медная стружка (5%), толченое стекло (15%) — плавится при температуре 1190-1300°С.
Применение цинка. Цинк имеет хорошую коррозионную стойкость в атмосферных условиях и в пресной воде. Поэтому цинк служит для хорошей антикоррозионной защиты кровельного железа и изделий из него.
Чистый цинк (марок ЦВ0, ЦВ1) применяют в полиграфической и автомобильной промышленности; цинк марки ЦВ00 — в электротехнике для изготовления источников постоянного тока.
Для получения фасонных отливок применяют сплавы ЦАМ с алюминием (4%), медью (0,5-3,5%) и магнием (0,1%). Из сплавов ЦАМ благодаря их легкоплавкости и жидкотекучести литьем под давлением получают отливки, не требующие дополнительной обработки поверхности. Деформируемые цинковые сплавы ЦАМ9-1,5, содержащие алюминий (9-11%), медь (1-2%), магний (0,05%), применяют для получения биметаллической антифрикционной ленты со сталью и алюминием.

Источник

ОЛОВО, СВИНЕЦ, ЦИНК И ИХ СПЛАВЫ

Олово — блестящий белый металл, обладающий низкой температурой плавления (231°С) и высокой пластичностью. Применяется в составе припоев, медных сплавов (бронза) и антифрикционных сплавов (баббит).

Свинец — металл голубовато-серого цвета, обладает низкой темпера­турой плавления (327°С) и высокой пластичностью. Входит в состав медных сплавов (латунь, бронза), антифрикционных сплавов (баббит) и припоев.

Цинк — светло-серый металл с высокими литейными и антикоррози­онными свойствами, температура плавления 419°С. Входит в состав медных сплавов (латунь) и твердых припоев.

Припои. Припой — это металлы или сплавы, используемые при пайке в качестве связки (промежуточного металла) между соединяемыми дета­лями. Припои имеют более низкую температуру плавления, чем соеди­няемые металлы. Незначительный нагрев соединяемых металлов, а вслед­ствие этого отсутствие изменения структуры металла являются основ­ным преимуществом пайки в сравнении со сваркой.

Табл. 14.

Оловянно-свинцовые и оловянные припои

Марка Основные компоненты, % (свинец — остальное) Температура плавления, °С Назначение
олово другие элементы соли-дус лик- видус
ПОС-90 Пайка и лужение пищевой посуды и медицинской аппаратуры
ПОС-61 Пайка и лужение электро- и радиоаппаратуры, печатных систем
ПОС-40 Пайка деталей из оцинкованного железа
ПОС-61 М Медь 2 Пайка тонкой медной проволоки и фольги
ПОССу-50-0,5 Сурьма до 0,5
ПОССу-30-0,5 То же Пайка листового цинка, радиаторов
ПОССу-40-2 Сурьма 1,5-2,0 Пайка холодильных установок
ПОССу-18-2 То же Пайка в автомобильной промышленности
ПОССу-4-6 Сурьма 5—6 Пайка и лужение в автомобильной промышленности
П250А Цинк 20 Пайка деталей из алюминиевых сплавов

По температуре расплавления припои (табл. 14) подразделяют на легкоплавкие (145—450°С), среднеплавкие (450—1100°С) и высокоплавкие 1100—1850°С). К легкоплавким относят оловянно-свинцовые (ПОС), оловянные, малосурьмянистые и сурьмянистые (ПОССу) и другие при­пои; медно-цинковые (латуни) относят к среднеплавким (905-985°С), а многокомпонентные на основе железа—к высокоплавким (1190—1480°С).

Оловянно-свинцовые припои широко применяют во всех отраслях про­мышленности. Для снижения охрупчивания олова при низких темпера­турах в состав припоев вводят сурьму. Оловянно-свинцовые припои име­ют низкую коррозионную стойкость во влажной среде. В этих условиях паяные соединения необходимо защищать лакокрасочными покрытиями.

Оловянные припои имеют высокую прочность, пластичность и корро­зионную стой кость. Их применяют при пайке радиотехнической и элек­тронной аппаратуры.

Марка Основные компоненты,% (цинк — остальное) Температура плавления, °С Назначение
медь другие элементы соли-дус лик­видус
ПМЦ-36 Пайка латуней и бронз с содержанием не более 68% меди
ПМЦ-48 Пайка латуней и бронз с содержанием более 68% меди
ПМЦ-54 Л63 Л 68 54 63 68 880 905 938 Пайка стали, жести, медных сплавов
ЛЖМц-57—1,5-0,75 ЛНМц-50-2 57 50 Марганец, железо по 1 Никель, марганец по 2 865 849 873 872 Пайка инструментов
МцН-48-10 Никель 10 Пайка чугуна

Медно-цинковые припои (латуни) широко применяют для пайки боль­шинства металлов (табл. 15). Для повышения прочности паяных соеди­нений в медно-цинковые припои вводят олово, никель и марганец. До­бавки олова понижают температуру плавления латуни, повышают кор­розионную стойкость и улучшают жидкотекучесть припоя.

При пайке сложных изделий со швами на вертикальной стенке при­меняют пастообразные и порошковые припои. Легкоплавкие пастооб­разные припои состоят обычно из трех частей: порошкообразного при­поя, флюса и загустителя. Так, пасту состава: припой Пор ПОССу-30-2 (70%), вазелин (20%), бензойная кислота (1,2%), аммоний хлористый (1,2%) и эмульгатор ОП-7 (0,6%) — применяют для пайки стальных, медных и никелевых изделий.

Тугоплавкие порошкообразные припои применяют для пайки твердо­сплавных пластин при производстве режущего инструмента. Состав припоя: ферромарганец (40%), ферросилиций (10%), чугунная стружка (20%), медная стружка (5%), толченое стекло (15%) — плавится при температуре 1190-1300°С.

Применение цинка. Цинк имеет хорошую коррозионную стойкость в атмосферных условиях и в пресной воде. Поэтому цинк служит для хоро­шей антикоррозионной защиты кровельного железа и изделий из него.

Чистый цинк (марок ЦВО, ЦВ1) применяют в полиграфической и авто­мобильной промышленности; цинк марки ЦВОО- в электротехнике для изготовления источников постоянного тока.

Для получения фасонных отливок применяют сплавы ЦАМ с алюми­нием (4%), медью (0,5-3,5%) и магнием (0,1%). Из сплавов ЦАМ благодаря их легкоплавкости и жидкотекучести литьем под давлением получают отливки, не требующие дополнительной обработки поверхно­сти. Деформируемые цинковые сплавы ЦАМ9-1,5, содержащие алюми­ний (9-11%), медь (1-2%), магний (0,05%), применяют для получения биметаллической антифрикционной ленты со сталью и алюминием.

Читайте также:  Составить формулы хлорид олова iv

АНТИФРИКЦИОННЫЕ СПЛАВЫ

Требования к сплавам. Антифрикционные сплавы предназначены для повышения долговечности трущихся поверхностей машин и механизмов. Трение происходит в подшипниках скольжения между валом и вклады­шем подшипника. Поэтому для вкладыша подшипника подбирают та­кой материал, который предохраняет вал от износа, сам минимально из­нашивается, создает условия для оптимальной смазки и уменьшает тре­ние. Исходя из этих требован и и, антифрикционный материал представ­ляет собой сочетания достаточно прочной и пластичной основы, в кото­рой имеются опорные (твердые) включения. При трении пластичная основа частично изнашивается, а вал опирается на твердые включения. В этом случае трение происходит не по всей поверхности подшипника, а смазка удерживается в изнашивающихся местах пластичной основы,

Антифрикционными сплавами служат сплавы на основе олова, свинца, меди или алюминия, обладающие специальными антифрикционными свойствами. Антифрикционные свойства сплавов проявляются при трении в подшипниках скольжения. Это, в первую очередь, низкий коэффициент трения, хорошая прирабатываемость к сопрягаемой дета­ли, высокая теплопроводность, способность удерживать смазку и др. Из антифрикционных сплавов наиболее широко применяют баббит, бронзу, алюминиевые сплавы, чугун и металлокерамические материалы.

Антифрикционные сплавы хорошо прирабатываются в парах трения благодаря мягкой основе— олову, с винцу или алюминию. Более твердые металлы (цинк, медь, сурьма), вкрапленные в мягкую основу, способны выдерживать большие нагрузки. После приработки и частичной дефор­мации мягкой основы в ней образуются углубления, способные удержи­вать смазку, необходимую для нормальной работы пары.

Сплавы. Баббиты— антифрикционные материалы на основе олова или свинца. Их применяют для заливки вкладышей подшипников скольже­ния, работающих при больших окружных скоростях и при переменных и ударных нагрузках. По химическому соста­ву баббиты классифицируют на три группы: оловянные (Б83, Б88), оловянно-свинцовые (БС6, Б16) и свинцовые (БК.2, БКА). Последние не имеют в своем соста­ве олова.

Лучшими антифрикционными свойст­вами обладают оловянные баббиты.

Баббиты на основе свинца имеют несколько худшие антифрикцион­ные свойства, чем оловянные, но они дешевле и менее дефицитны. Свин­цовые баббиты применяют в подшипниках, работающих в легких усло­виях. В марках баббитов цифра показывает содержание олова. Напри­мер, баббит БС6 содержит по 6% олова и сурьмы, остальное — свинец.

Дня оловянных и оловянно-фосфористых бронз характерны высокие антифрикционные свойства: низкий коэффициент трения, небольшой износ, высокая теплопроводность, что позволяет подшипникам, изготовленным из этих материалов, работать при высоких окружных скоростях и на­грузках.

Алюминиевые бронзы, используемые в качестве подшипниковых спла­вов, отличаются большой износостойкостью, но могут вызвать повышен­ный износ вала. Их применяют вместо оловянных и свинцовых баббитов и свинцовых бронз.

Свинцовые бронзы в качестве подшипниковых сплавов могут работать в условиях ударной нагрузки.

Латуни по антифрикционным свойствам уступают бронзам. Их ис­пользуют для подшипников, работающих при малых скоростях и уме­ренных нагрузках.

Из-за дефицитности олова и свинца применяют сплавы на менее дефи­цитной основе, например алюминиевые сплавы. Алюминиевые сплавы обладают хорошими антифрикционными свойствами, высокой тепло­проводностью, хорошей коррозионной стойкостью в масляных средах и достаточно хорошими механическими и технологическими свойствами. Их применяют в виде тон кого слоя, нанесенного на стальное основание, т.е. в виде биметаллического материала..

Металлокерамические сплавы получают прессованием и спеканием порошков бронзы или железа с графитом (1-4%). Пористость сплава 15-30%. После спекания сплавы пропитывают минеральными масла­ми, смазками или маслографитовой эмульсией. Сплавы хорошо при­рабатываются к валу, а наличие смазки в порах способствует снижению износа подшипника.

Металлические проводниковые ма­териалы подразделяются на материа­лы высокой проводимости и материалы (сплавы) высокого электрического со­противления (высокоомные).

МАТЕРИАЛЫ ВЫСОКОЙ ПРОВОДИМОСТИ

Материалы высокой проводимости должны обладать малой величиной удельного электросопротивления (вы­сокой электропроводностью); высокими механическими свойствами (достаточ­ной прочностью и высокой пластич­ностью); хорошими технологическими свойствами (способностью к пластиче­ской деформации — прокатке, волоче­нию; способностью к пайке и сварке);

стойкостью против коррозии.

Материалы высокой проводимости применяют для изготовления обмоточ­ных и монтажных проводов, различ­ного вида токоведущих частей, исполь­зуемых при изготовлении приборов, аппаратов, электрических машин, трансформаторов, катушек индуктив­ности, волноводов и т. д.

К основным материалам высокой проводимости относятся медь, алюми­ний и ряд сплавов на их основе, а также железо. Их применяют в виде полуфабрикатов различной конфигу­рации и размеров, а также в виде раз­личного рода проводов (неизолирован­ных и изолированных).

Медь — лучший материал высокой проводимости. По электропроводимо­сти среди всех металлов она стоит на втором месте после серебра; обладает высокими механическими и техноло­гическими свойствами (хорошо под­дается прокатке и волочению до тон­чайших размеров, пайке, противостоит коррозии). Наибольшую электропро­водность имеет чистая медь. Присадки других элементов к меди понижают ее электропроводность.

Для электротехнических целей при­меняют наиболее чистую техническую медь марок М0к (99,95%) и М1к (99,9 %) по ГОСТ 859—78. Из нее из­готовляют изолированную и неизоли­рованную проволоку, ленту, листы, шины.

Проводимость отожженного про­водникового алюминия составляет 62 % от проводимости стандартной меди (по объему). Однако на единицу массы алюминий имеет проводимость вдвое большую чем медь. В качестве проводникового материала применяют следующие марки алюминия: А995, А95, А85, А8, А7, А7Е, А6, А5, А5Е. Наибольшей электропроводимостью обладает чистый алюминий.

СПЛАВЫ ВЫСОКОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ

Сплавы высокого электрического сопротивления (высокоомные) могут быть подразделены на две основные группы.

1. Сплавы для изготовления сопро­тивлений: прецизионных (образцовые сопротивления, различные элементы электроизмерительных приборов, ка­тушки сопротивления, шунты, об­мотки потенциометров); технических (регулирующие и пусковые реостаты, нагрузочные элементы).

2. Жаростойкие сплавы (нагрева­тельные элементы электропечей и электронагревательных приборов, на­грузочные элементы).

К высокоомным сплавам относятся также сплавы для термопар и компен­сационных проводов.

В зависимости от назначения к высо­коомным сплавам предъявляют спе­циальные требования. Кроме того, эти сплавы должны обладать возможно большим удельным электрическим со­противлением и иметь хорошие меха­нические свойства — высокую проч­ность и достаточную пластичность, обеспечивающие возможность получе­ния тончайшей проволоки, лент, фоль­ги.

Источник