Термообработка для стали 10хснд

Сталь марки 10ХСНД

Марка: 10ХСНД (заменители: 16Г2АФ)
Класс:
Сталь конструкционная низколегированная для сварных конструкций
Вид поставки: сортовой прокат, в том числе фасонный: ГОСТ 19282-73, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 8239-89, ГОСТ 8240-97, ГОСТ 6713-91, ГОСТ 535-2005, ГОСТ 5521-93, ГОСТ 8509-93, ГОСТ 8510-86. Лист толстый ГОСТ 19282 -73, ГОСТ 19903-74, ГОСТ 5521-93, ГОСТ 6713-91. Лист тонкий ГОСТ 17066-94 , ГОСТ 19903-74, ГОСТ 19904-90, ГОСТ 5521-93. Полоса ГОСТ 19281-89 , ГОСТ 82-70, ГОСТ 103-2006, ГОСТ 6713-91, ГОСТ 14637-89, ГОСТ 19282-73, ГОСТ 5521-93. Поковки и кованые заготовки ГОСТ 1133-71. Трубы ОСТ 14-21-77.
Использование в промышленности: элементы сварных металлоконструкций и различные детали, к которым предъявляются требования повышенной прочности и коррозионной стойкости с ограничением массы и работающие при температуре от —70 до 450 °С,
Химический состав в % стали 10ХСНД
C до 0,12
Si 0,8 — 1,1
Mn 0,5 — 0,8
Ni 0,5 — 0,8
S до 0,04
P до 0,035
Cr 0,6 — 0,9
N до 0,008
Cu 0,4 — 0,6
As до 0,08
Fe
Зарубежные аналоги марки стали 10ХСНД
Болгария 10ChSND
Свойства и полезная информация:
Температура ковки, o С: начала 1200, конца 850.
Свариваемость материала:
без ограничений. Способы варки: РДС, АДС под флюсом и газовой защитой, ЭШС
Обрабатываемость резанием: в нормализированном и опущенном состоянии σв= 560МПа, Kv б.ст= 1,12, Kv тв.опл= 1,4.
Флокеночувствительность: не чувствительна.
Склонность к отпускной хрупкости:
малосклонна.
Механические свойства стали 10ХСНД
ГОСТ Состояние поставки, режим термообработки Сечение, мм σ0,2 (МПа)
σв(МПа) δ5 (%)
19281-73 Сортовой и фасонный прокат До 15 вкл. 390 530 19
18282-73 Листы и полосы в состоянии поставки (образцы поперечные) Св. 15 до 32 вкл.
Св. 32 до 40 вкл.
390
390
530
530
19
19
17066-80 Листы горячекатные От 2 до 3,9 вкл. 530 15
Ударная вязкость стали 10ХСНД при отрицательных температурах (Дж/см 2 )
ГОСТ Состояние поставки Сечение, мм Т= -40 °С Т= -70 °С
19281-73 Сортовой и фасонный прокат От 5 до 10
От 10 до 15 вкл.
KCV
49
39
KCV
34
29
19282-73 Листы и полосы (образцы поперечные) От 5 до 10
От 10 до 15 вкл.
Св. 15 до 32 вкл.
Св. 32 до 40 вкл.
KCU
49
39
49
49
KCU
34
29
29
29
Предел выносливости стали 10ХСНД в горячекатном состоянии
σ-1, МПА
J-1, МПА
Толщина, мм
284
274
167
167
4-32
33-40
Механические свойства стали 10ХСНД при повышенных температурах
Температура испытаний, °С σ0,2 (МПа) σв(МПа) δ5 (%) ψ %
Листы толщиной 20 мм. Нормализация
20
100
200
300
400
500
600
700
800
900
410
360
330
305
295
265
195
140
59
59
540
500
470
480
490
370
215
160
78
78
36
33
28
28

30
35
47
71
70
71
71
70


77
87
94
87
95
Физические свойства стали 10ХСНД
T (Град) E 10 — 5 (МПа) a 10 6 (1/Град) l (Вт/(м·град)) r (кг/м 3 ) C (Дж/(кг·град)) R 10 9 (Ом·м)
20
100 1.97 40
200 2.01 39
300 1.95 38
400 1.88 36
500 1.8 34
600 1.69 31
700 1.56 29
800 1.35
900 1.25

Особенности сварки 10ХСНД и низколегированных сталей: низколегированные стали относятся к разряду хорошо свариваемых. Однако наличие в них легирующих элементов обусловливает возможность появления закалочных структур в зоне термического влияния, что при неблагоприятном сочетании других факторов может вызвать уменьшение стойкости ее против холодных трещин. Легирующие элементы могут снизить также сопротивляемость швов горячим трещинам, усугубить или, напротив, ослабить последствия перегрева и склонность к хрупкому разрушению металла в зоне термического влияния и шве. Особые затруднения возникают при сварке термически улучшенных сталей, которые разупрочняются в различных участках зоны термического влияния.

Наибольшие трудности при сварке сталей этого класса связаны с получением требуемой ударной вязкости металла шва и зоны термического влияния вблизи границы сплавления. Низкая стойкость против хрупкого разрушения низколегированных сталей, подвергнутых перегреву при электрошлаковой сварке, может явиться следствием значительного укрупнения аустенитного зерна и внутризеренной структуры, образования видманштеттовой структуры и ферритных оторочек по границам зерен, повышенной хрупкости ферритной основы металла, развития высокотемпературной химической неоднородности, перераспределения и выделения по границам зерен карбидов или легкоплавких сульфидных включений в виде плен и строчек.

Подобные же причины вызывают снижение стойкости против хрупкого разрушения металла шва. В противоположность металлу зоны термического влияния, который под влиянием сварочного нагрева претерпевает а — у — а-превращение, в металле шва происходит только превращение у — а. Это обстоятельство, а также крупнозернистость строения металла шва вызывают заметную его химическую неоднородность, в особенности по наиболее ликвирующим примесям стали-сере, фосфору, углероду.

Электрошлаковому способу сварки присуще рафинирующее действие. Исключительно чистым оказывается шов по оксидным включениям, столь типичным для всех способов дуговой сварки. Что касается сульфидов и фосфидов, их общее количество невелико. На свойства шва при электрошлаковой сварке основное влияние оказывает не столько количество этих включений, сколько выделение сульфидов в виде пленок по границам зерен, в особенности в области оси шва, и внутрикристаллическая ликвация фосфора, обогащающего участки феррита, совпадающие с границами первичных кристаллитов.

Распределение неметаллических включений в металле шва в значительной степени определяется направленностью роста кристаллитов, зависящей, в свою очередь, от режимов сварки. С увеличением скорости сварки (скорости подачи проволоки) и глубины металлической ванны количество сульфидов, оттесненных коси шва растущими под тупым углом кристаллитами, увеличивается, а ударная вязкость металла шва понижается.

Уменьшают сопротивляемость хрупким разрушениям газы — кислород и азот, находящиеся в твердом растворе, и повышенная плотность дислокаций в металле шва.

В соединениях из большинства низколегированных сталей ударная вязкость металла шва и зоны термического влияния вблизи границы сплавления в участках перегрева и твердо-жидкого состояния при комнатной температуре в состоянии после сварки или после отпуска обычно удовлетворяет требованиям соответствующих технических условий. При более низких температурах ударная вязкость этих участков зачастую низка. По этим причинам выбор технологии электрошлаковой сварки и последующей термообработки во многом определяется условиями эксплуатации конструкции и стойкостью низколегированной стали и металла шва в сварном соединении против хрупкого разрушения.

Существует ряд возможностей для получения соединений с высокими свойствами. Они состоят в выборе материалов с высокой стойкостью против перегрева при электрошлаковой сварке, рациональной термообработки, режимов и технологических приемов сварки. Задача технолога состоит в оценке сопротивляемости хрупкому разрушению металла шва и свариваемой стали в зоне термического влияния и определении применительно к конкретным конструкциям и условиям их эксплуатации рациональных методов повышения свойств соединений.

Легирование стали оказывает решающее влияние на стойкость ее против перегрева при электрошлаковой сварке. При рациональном легировании стали она может оказаться столь высокой, что требования по ударной вязкости металла вблизи границы сплавления удовлетворяются уже после высокого отпуска, без применения улучшающей высокотемпературной термообработки — нормализации.

Краткие обозначения:
σв — временное сопротивление разрыву (предел прочности при растяжении), МПа ε — относительная осадка при появлении первой трещины, %
σ0,05 — предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 — предел текучести условный, МПа σизг — предел прочности при изгибе, МПа
δ5,δ4,δ10 — относительное удлинение после разрыва, % σ-1 — предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж — предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν — относительный сдвиг, % n — количество циклов нагружения
s в — предел кратковременной прочности, МПа R и ρ — удельное электросопротивление, Ом·м
ψ — относительное сужение, % E — модуль упругости нормальный, ГПа
KCU и KCV — ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T — температура, при которой получены свойства, Град
s T — предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ — коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB — твердость по Бринеллю C — удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV — твердость по Виккерсу pn и r — плотность кг/м 3
HRCэ — твердость по Роквеллу, шкала С а — коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB — твердость по Роквеллу, шкала В σ t Т — предел длительной прочности, МПа
HSD — твердость по Шору G — модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Источник

Сверхпрочная сталь марки 10ХСНД: основные характеристики и свойства

Сталь марки 10ХСНД выпускается в виде толстолистового, широкополосного, полосового и фасонного проката и применяется для изготовления сварных металлоконструкций повышенной прочности и стойкости к появлению коррозии.

Характеристики материала

Основные характеристики стали – это твердость, плотность, предел текучести/плотности, ударная вязкость и другие.

Твердость

Твердость металла – способность сопротивляться упругой и пластической деформации при воздействии на поверхность более твердым материалом. Твердость может выражаться в разных числовых значениях в зависимости от метода и шкалы измерения:

  • по Роквеллу – 77,4 МПа;
  • по Бринеллю – не более 143 МПа;
  • в состоянии плавки около 18 МПа.

Плотность

Плотность – величина постоянная, измеряемая при помощи гидростатического метода.

Маркировка

Марка стали – это классификация по химическому составу и физическим свойствам. Согласно ГОСТ Р 54384-2011 классификация стали основана на ее химическом составе по анализу ковшевой пробы или маркировочному анализу.

По маркировочному анализу содержание углерода в 10ХСНД составляет от 0,07 до 0,14 %, соответственно, марка стали – 10 (среднее содержание углерода 0,10%).

Химсостав

Химический состав в соответствии с нормативными документами:

  • железо – 96 %;
  • углерод – не более 0,12 %;
  • хром – до 0,12 %;
  • примеси (медь, кремний, марганец, никель) – 0,8 %.

Предел прочности

Предел прочности – механическое напряжение, при превышении которого материал разрушается. Для 10ХСНД предел прочности составляет от 510 до 685 МПа.

Предел текучести

Предел текучести – значение напряжения, при котором деформация увеличивается без дополнительной нагрузки. Для 10ХСНД он составляет 390 МПа.

Ударная вязкость

Ударная вязкость – способность металла поглощать механическую энергию, которая выделяется при разрушении и деформации.

Нормы ударной вязкости данной марки, Дж/см 2 :

  • после механического старения – 29,0;
  • при −40 °C – от 39,0 до 44, 0;
  • при −70 °C – от 29,0 до 34, 0.

Температура эксплуатации

Эта марка используется для изготовления сварных конструкций, деталей, работающих в интервале температур −70…+475 °C, к которым предъявляются повышенные требования по прочности, стойкости к коррозии при ограничении массы.

Механические свойства

Механические свойства стали 10ХСНД, которая относится к классу прочности С390, определяет ГОСТ Р 55374-2012 (минимальные значения):

  • предел текучести – 390 МПа;
  • временное сопротивление разрыву – 530 МПа;
  • относительное удлинение – 19 %;
  • относительное сужение – 35 %.

Отпускная хрупкость

Отпускная хрупкость – состояние сплава, характеризующееся небольшим значением ударной вязкости. Сталь марки 10ХСНД не имеет склонности к отпускной хрупкости.

Свариваемость

10ХСНД обладает высоким показателем свариваемости, не имеет ограничений и сваривается ручной/автоматической дуговой сваркой под флюсом и газовой защитой, электрошлаковой сваркой.

Группа

Сплав 10ХСНД относится к группе конструкционных низколегированных сталей. В таком сплаве содержание легирующих элементов не должно превышать 2,5 %.

Общие свойства группы определяют характеристики изделий:

  • антикоррозийная устойчивость;
  • стойкость к истиранию;
  • легко поддаются обработке;
  • сохраняют рабочие характеристики при низких температурах.

к содержанию ↑

  1. ГОСТ 19281-2014 «Прокат повышенной прочности. Общие технические условия» определяет классификацию, сортамент, технические требования и требования безопасности прокатной продукции.
  2. ГОСТ 1050-2013 «Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия» устанавливает требования к химическому составу.
  3. ГОСТ 6713-91 «Прокат низколегированный конструкционный для мостостроения. Технические условия» устанавливает требования к химическому составу.
  4. ГОСТ Р 55374-2012 «Прокат из стали конструкционной легированной для мостостроения. Общие технические условия» устанавливает нормы химического состава и механических свойств сплава.
  5. ГОСТ Р 54384-2011 «Сталь. Определение и классификация по химическому составу и классам качества» определяет понятие «сталь» и подразделяет стали по химическому составу, основным свойствам и области применения.

к содержанию ↑

Цена в 2021 году

Стоимость стали марки 10ХСНД (рублей за тонну) в первом полугодии 2021 года:

  • листовая – около 130 000;
  • швеллер – около 142 000;
  • полоса – около 62 000.

Расшифровка

Обозначение 10ХСНД расшифровывается следующим образом:

  • 10 указывает на среднее содержание углерода в стали (0,10 %).
  • Х – хром.
  • С – кремний.
  • Н – никель.
  • Д – медь.

После всех буквенных обозначений отсутствуют цифры. Это значит, что содержание хрома, кремния, никеля и меди в составе меньше одного процента.

Область применения

Область применения сплава определяется его характеристиками: хорошими показателями прочности, высокой износостойкостью, устойчивостью к коррозии. Он применяется:

  1. В строительстве для производства конструкций типа арок, мостовых пролетов, несущих элементов, мостовых металлоконструкций обычного и северного исполнения.
  2. В магистральных газо- и нефтепроводных путях (запорная арматура).
  3. В производстве дорожной, горнодобывающей и строительной техники (ковши).
  4. В производстве лесозаготовительных и сельскохозяйственных машин (лемеха плугов, элементы отжимных прессов).
  5. В изготовлении механизмов для переработки строительных и металлических отходов (ножи для шредера, гидравлические ножницы, футеровки).

к содержанию ↑

Свойства

Различают технологические и физические свойства материала.

Технологические

  1. Низколегированная сталь сваривается без ограничений, но этот класс сталей требует от сварщика определенных знаний и навыков работы. Технолог, выбирая способ электросварки и последующей термообработки, должен учитывать условия, в которых конструкция будет эксплуатироваться.
  2. При обработке на токарно-фрезерном оборудовании нет необходимости подбирать какой-либо специальный инструмент или специальные режимы резания. В нормализованном и отпущенном состоянии легко обрабатывается инструментом с режущими элементами из твердых сплавов.
  3. Температура ковки 1200 °C (начала) и 850 °C (конца).
  4. Невысокая склонность к отпускной хрупкости.
  5. Нет флокеночувствительности.

к содержанию ↑

Физические

  1. Химический состав сплава определяет его физические свойства.
  2. Углерод – главный легирующий элемент – обеспечивает прочность металла.
  3. Кремний повышает прочность, стойкость к окислению и высоким температурам.
  4. Марганец незначительно повышает пластичность металла и его прочность.
  5. Никель положительно влияет на прокаливаемость стали, ее износостойкость и коррозионную стойкость.
  6. Хром увеличивает стойкость сплава к коррозии, его прочность и жаростойкость.
  7. Медь значительно повышает устойчивость сплава к ржавлению.
  8. В сплаве присутствуют примеси азота, мышьяка, фосфора и серы, которые отрицательно влияют на свойства материала, их из-за низкого процентного содержания принято не учитывать.

к содержанию ↑

Аналоги

У 10ХСНД есть отечественные и зарубежные аналоги со схожими свойствами.

Отечественные

Среди отечественных аналогов наиболее близки по характеристикам 10ХСНДА, 16Г2АФ.

Зарубежные

Из зарубежных аналогов очень близка по свойствам сталь10ChSND, произведенная в Болгарии.

Повышенная прочность, свариваемость без ограничений, устойчивость к коррозии, способность сохранять рабочие свойства в большом диапазоне температур позволяют применять 10ХСНД в производстве деталей спецтехники, мостостроении, элементах конструкций промышленных зданий, возводимых в сложных климатических условиях.

Источник

Читайте также:  Прорабами перестройки стали называть сторонников