Вычертит диаграмму состояния системы свинец олово

Диаграмма состояния системы свинец олово

При исследовании характеристик сплавов очень важны диаграммы состояния, указывающие на состояние сплавов разного химического состава при различающихся температурных режимах. Они указывают на устойчивые (с точки зрения термодинамики) состояния. Их зовут фазовыми диаграммами, поскольку они указывают на то, существование каких фаз возможно в имеющихся условиях.

Диаграмма является графическим отображением изменений, идущих в сплавах при меняющейся концентрации и температуре, что позволяет выбрать оптимальный режим обработки сплава. Диаграммы выстраиваются на базе данных термического исследования, благодаря которому вычисляются температуры фазовых превращений, идущих в сплавах, их еще зовут критическими точками.

Как построить диаграмму?

Диаграмма состояния системы свинец олово строится в результате экспериментов. Как правило, с этой целью чертят кривые охлаждения, по которым и вычисляют в дальнейшем температуры превращений. Чтобы их получить, из свинца и олова готовят набор смесей с отличающимся химическим составом. Подготовленные смеси плавят, а потом постепенно охлаждают, помечая через некоторые временные промежутки их температуру. По итогам проведенных экспериментальных наблюдений вычерчивают кривые охлаждения, причем оси Х указывают время, а по оси У — температуру.

При фазовых переходах, идущих в сплаве в процессе охлаждении, выделяется скрытое тепло и происходит кристаллизация, что является компенсацией отведения тепла вовне и способствует замедлению понижения температуры сплава. Переходы, случающиеся при неизменной температуре, помечаются на диаграмме площадкой.

Источник

Диаграмма состояния системы свинец олово

Диаграмма состояния системы свинец олово

Влияние олова на медные сплавы. Олово улучшает литейность, понижает температуру плавления, образуется эвтектика и снижается сегрегация.

Поскольку олово снижает скорость усадки, художественное литье может быть сделано.

Поскольку Оловянная бронза имеет много пор, она плохо работает при давлении пара.

Эти сплавы обладают коррозионной стойкостью и используются в судостроении. Оловянные бронзы со временем темнеют, поэтому из них часто делают украшения.

  • Низкий коэффициент трения. Существуют однофазные (5-6% sn) и двухфазные (>8% sn). Медные монеты изготавливаются из однофазной бронзы, так как они обладают высокой пластичностью и отличной коррозионной стойкостью.

Двухфазная бронза наиболее часто используется и используется для подшипников скольжения. Броф-10-1 (олово-фосфорная бронза, 10% олова, 1% фосфора), Броцс-5-5-5 (включая свинцовый цинк).

Плавление и кристаллизация вещества представляет собой фазовый переход 1-го порядка, и в случае чистого вещества плавление характеризуется определенной температурой, которая является постоянной этого вещества.

  • В отличие от чистых веществ, многокомпонентные смеси кристаллизуются не при определенной температуре, а в определенном диапазоне температур. Таким образом, плавление и кристаллизация сплавов при заданной концентрации характеризуется температурой, при которой начинается и заканчивается кристаллизация, которая сильно зависит от состава сплава.

Для определения зависимости температуры кристаллизации от состава расплава удобно представить результаты измерений в виде диаграммы состояния. Фазовая диаграмма представляет собой графическое представление изменения равновесного состояния сплава в соответствии с температурой и концентрацией.

Очевидно, что внешний вид диаграммы состояния зависит от различных сочетаний веществ и зависит от характера взаимодействия между компонентами сплава.

Диаграмма состояния имеет простейший вид, когда вещество обладает неограниченной растворимостью как в жидкой фазе, так и в твердой фазе. Эта характеристика обеспечена в системе cu-ni. АГ-Ас; bi и sb и т. д.

  • Линии АНКБ называется линией Ликвидус, а линия Амлб называется линией Солидус. Над линией Ликвидуса находится однородная жидкость. Ниже Солидуса находится однородный твердый раствор. Затененная область-это область, которая должна быть разделена на жидкую фазу и твердую фазу.

Создавая кривую охлаждения для концентрации сплава С, можно видеть, что существуют 2 критические точки k и m, соответствующие началу и концу затвердевания соответственно.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

К выполнению контрольной работы №1

по дисциплине «Материаловедение»

А) Вычертить диаграмму состояния сплавов системы «свинец Pb – олово Sn» (рис. П.5). Указать основные линии, точки, а также структурно-фазовый состав всех областей диаграммы. Для сплава, содержащего 20% олова Sn, построить кривую охлаждения и описать происходящие при охлаждении фазовые превращения. Для данного сплава оп­ределить количественное соотношение структурно-фазовых составляющих и их состав при температуре 250ºC и схематично изобразить его структуру.

Читайте также:  Хлорид олова 2 карбонат натрия

10 20 30 40 50 60 70 80 90 100% Sn

РЬ 100% 90 80 70 60 50 40 30 20 10 0

Рис. 1. Диаграмма состояния сплавов системы «свинец Pb — олово Sn»

Диаграмма состояния сплавов системы «свинец Pb — олово Sn» (рис. 1) относится к разновидности диаграмм состояния двойных сплавов III типа, является диаграммой состоя­ния сплавов, испытывающих фазовые превращения в твёрдом состоянии (диаграмма состоя­ния сплавов с переменной растворимостью компонентов в твёрдом состоянии). По внешнему виду диаграмма похожа на диаграмму состояния сплавов с ограниченной растворимостью компонентов в твёрдом состоянии. Отличие только состоит в том, что линии предельной растворимости компонентов не перпендикулярны оси концентрации. На диаграмме имеются области, в которых из однородных твёрдых растворов при понижении температуры выделя­ются вторичные фазы. Поэтому данный тип диаграммы характерен для сплавов, образующих при сплавлении компонентов твёрдые растворы, имеющих ограниченную взаимную раство­римость друг в друге, изменяющуюся с изменением температуры.

Основные линии диаграммы:

ACB — линия ликвидус, линия начала процесса кристаллизации;

ADCEB — линия солидус, линия конца процесса кристаллизации;

Dm — линия переменной предельной растворимости олова Sn в свинце Pb;

En — линия переменной предельной растворимости свинца Pb в олове Sn;

DCE — линия кристаллизации эвтектики (T = 183ºC).

Основные точки диаграммы:

A — температура кристаллизации чистого свинца Pb (T = 327ºC);

B — температура кристаллизации чистого олова Sn (T = 232ºC);

C — температура кристаллизации эвтектического сплава 62% Sn + 38% Pb (T = 183ºC);

D — максимальная предельная растворимость олова Sn в свинце Pb (13% олова Sn в 87% свинца Pb при T = 183ºC);

E — максимальная предельная растворимость свинца Pb в олове Sn (4% свинца Pb в 96% олова Sn при T = 183ºC).

На диаграмме условно обозначены следующие фазы:

α — твёрдый раствор олова Sn в основном компоненте-растворителе свинце Pb;

β — твёрдый раствор свинца Pb в основном компоненте-растворителе олове Sn.

Из данной диаграммы видно, что с понижением температуры растворимость олова Sn в свинце Pb и, соответственно, свинца Pb в олове Sn (линии Dm и En соответственно) умень­шаются. Вследствие этого из твёрдых растворов выделяются избыточные фазы, то есть в сплаве образуются равномерно распределённые зоны, содержащие избыточное количество растворённого компонента. Таким образом, из α-твёрдого раствора, например, выделяются вторичные кристаллы β-твёрдого раствора (β II) переменного состава; из β-твёрдого раствора — вторичные кристаллы α-твёрдого раствора (αII). Составы этих вторичных кристаллов оп­ределяются соответственно линиями Dm и En.

Причинами выделения вторичных фаз (αII и βII) в сплавах в твёрдом состоянии при понижении температуры являются:

1) изменение параметров кристаллических решёток основных компонентов-растворителей;

2) изменение типов кристаллических решёток сплавляемых компонентов при пониже­нии температуры (полиморфное превращение), что приводит к изменению растворяющей способности.

Сплавы составов левее точки m состоят из однородного α-твёрдого раствора — твёрдо­го раствора олова Sn в основном компоненте-растворителе свинце Pb, а сплавы стоящие пра­вее точки n — из однородного β-твёрдого раствора — твёрдого раствора свинца Pb в основ­ном компоненте-растворителе олове Sn.

Сплавы составов от точки m до точки d имеют микроструктуру, состоящую из кристал­лов α-твёрдого раствора переменного состава и вторичных кристаллов β II-твёрдого раствора, а от точки e до точки n — из кристаллов β-твёрдого раствора переменною состава и вторич­ных кристаллов α II-твёрдого раствора.

На диаграмме также можно выделить следующие сплавы:

Эвтектический сплав (эвтектика). На диаграмме данный сплав соответствует проек­ции точки С на ось концентраций, содержит 62% олова Sn и 38% свинца Pb. Этот сплав на­чинает кристаллизоваться при самой низкой температуре 183ºC среди всех сплавов рассмат­риваемой системы; имеет при понижении температуры постоянный количественный состав компонентов; структура его в твёрдом состоянии представляет собой мелкодисперсную ме­ханическую смесь кристаллов α- и β-твёрдых растворов переменного состава.

Доэвтектические сплавы, имеющие состав от точки d до точки c состоят из первичных кристаллов α-твёрдого раствора, эвтектики (α + β) и мелких вторичных кристаллов β II-твёрдого раствора, выделившихся из твёрдой фазы при понижении температуры. Первич­ные кристаллы α-твёрдого раствора равномерно распределены в эвтектике (α + β). Доэвтек­тические сплавы начинают кристаллизоваться с выделения из жидкой фазы кристаллов α-твёрдого раствора переменного состава (область диаграммы ADC, лежащая между линия­ми ликвидус и солидус).

Заэвтектические сплавы, имеющие состав от точки c до точки e, состоят из первичных кристаллов β-твёрдого раствора, эвтектики (а + β) и мелких вторичных кристаллов α II-твёрдого раствора, выделившихся из твёрдой фазы при понижении температуры. Первич­ные кристаллы β-твёрдого раствора равномерно распределены в эвтектике (α + β). Заэвтектические сплавы начинают кристаллизоваться с выделения из жидкой фазы кристаллов β-твёрдого раствора переменного состава (область диаграммы CEB, лежащая между линиями ликвидус и солидус).

Читайте также:  Реакция нитрата ртути с хлоридом олова

Таким образом, в структурно-фазовом составе сплавов рассматриваемой системы важ­ное место занимает эвтектика, представляющая собой смесь мелкодисперсных фаз α и β. Она имеет постоянный количественный состав компонентов (Pb и Sn) и кристаллизуется при наименьшей для данной системы сплавов температуре tэ = 183ºC, т. е. температуре, соответ­ствующей линии DCE. Ниже этой линии находится область двухфазных сплавов.

Выше линии ликвидус (линии ACB) сплавы представляют собой жидкие фазы — неог­раниченные растворы компонентов (свинца Pb и олова Sn) друг в друге в жидком состоянии.

Для диаграмм состояния сплавов III типа характерно то, что кристаллы сплавляемых компонентов в чистом виде ни в одном из сплавов системы не присутствуют.

Рассмотрим процесс кристаллизации сплава, содержащего 80% Pb и 20% Sn (рис. 2, 3).

Т,°С

327°С

0 10 20 30 40 50 60 70 80 90 100% Sn РЬ 100% 90 80 70 60 50 40 30 20 10 0 Кривая охлаждения двойного t, МИН

Рис. 2. Построение кривой охлаждения сплава «80% Pb + 20% Sn»

Рис. 3. Кривая охлаждения сплава «80% Pb + 20% Sn»

Построение кривой охлаждения сплава «80% Pb + 20%Sn» проводится в следующей последовательности:

а) через точку оси абсцисс, соответствующую составу сплава «80% Pb + 20%Sn», про­водится вертикаль — линия сплава (рис. 1, 2);

б) точки пересечения линии сплава с линиями диаграммы обозначаются цифрами (рис. 2). Это — критические точки, указывающие критические температуры начала и кон­ца процесса кристаллизации, перекристаллизации (если она имеется) данного сплава;

в) в соответствии с выявленными критическими температурами строится кривая охла­ждения сплава в координатах «температура — время» (рис. 2, 3).

Согласно представленной на рис. 3 кривой охлаждения при кристаллизации сплава «80% Pb + 20%Sn» происходят следующие структурно-фазовые превращения.

При температуре выше точки 1 (T = 295ºC) сплав находится в жидком состоянии (жид­кая фаза) и представляется собой неограниченный раствор компонентов (Pb и Sn) друг в дру­ге. Соответственно, точка 1, лежащая на линии ликвидус A C, — температура начала кри­сталлизации данного сплава.

При охлаждении сплава ниже температуры точки 1 из жидкой фазы начинают выде­ляться кристаллы α-твёрдого раствора — кристаллы твёрдого раствора олова Sn в основном компоненте-растворителе свинце Pb состава, соответствующему абсциссе точки a, лежащей на линии солидус (линии ADCEB) диаграммы. Таким образом, при понижении температуры количественный состав выделяющихся из жидкой фазы первичных кристаллов α-твёрдого раствора изменяется по линии AD от точки A до D. При этом характер хода кривой охлажде­ния изменяется, процесс охлаждения замедляется, что вызвано выделением скрытой теплоты кристаллизации при образовании кристаллов α-твёрдого раствора из жидкой фазы. Поэтому на кривой охлаждения наблюдается излом (участок 1 — 2). Фазовый состав сплава на участке 1 — 2 кривой охлаждения — жидкая фаза + первичные кристаллы α-твёрдого раствора.

При достижении температуры точки 2 (T = 183ºC, линия DCE диаграммы) возникает нонвариантная система (количество степеней свободы системы C = 0). То есть количество независимых внутренних и внешних параметров системы (температура, давление, концен­трация), которые можно произвольно изменять без изменения количества фаз (равновесия) в системе, равно нулю. В данном случае при T = 183ºC (точка 2) в равновесии находятся одно­временно три фазы:

1) жидкая фаза, соответствующая количественному составу точки C диаграммы (62% Sn + 38% Pb);

2) кристаллы α-твёрдого раствора, количественного состава, соответствующего точке D диаграммы (13% Sn + 87% Pb);

3) кристаллы β-твёрдого раствора, количественного состава, соответствующего точке E диаграммы (96% Sn + 4% Pb)

При температуре, соответствующей линии DCE — линии кристаллизации эвтектики (T = 183ºC), возникает эвтектическое превращение

Трём фазам соответствуют определённые количественные составы компонентов, ха­рактеризующиеся проекциями точек D, C и E, хотя температура их превращения постоян­на.

При кристаллизации сплава между точками 2 и 2′ (T = 183ºC) кроме первичных кри­сталлов α-твёрдого раствора, образуется также эвтектика (α + β) — мелкодисперсная меха­ническая смесь кристаллов α— и β-твёрдого раствора, количественного состава (62%Sn + 38% Pb). Температура кристаллизации эвтектики постоянна, независимо оттого, что допол­нительной теплоты от внешней среды не поступает. Причиной постоянства температуры кристаллизации эвтектики также является выделение скрытой теплоты кристаллизации. В точке 2 эвтектика полностью находится ещё в жидком состоянии, между точками 2 и 2′ — в жидком и твёрдом состояниях, в точке 2′ — полностью в твёрдом состоянии. На участке 2 — 2′ кривой охлаждения фазовый состав сплава — первичные кристаллы α-твёрдого рас­твора, эвтектика (α + β) и жидкая фаза. В точке 2′ сплав полностью переходит в твёрдое со­стояние.

Читайте также:  Притягивает ли магнит олово

При дальнейшем охлаждении сплава ниже точки 2′ из первичных кристаллов α-твёрдого раствора выделяются вторичные кристаллы βII-твёрдого раствора. При обычных температурах кристаллы α-твёрдого раствора сплава имеют количественный состав компо­нентов, соответствующий точке m диаграммы (2,5%Sn + 97,5% Pb), а кристаллы βII-твёрдого раствора — соответствующий точке n диаграммы (99%Sn + 1% Pb). Причиной выделения вторичных кристаллов βII-твёрдого раствора из α-твёрдого раствора являются: 1) изменение параметров кристаллической решётки компонента-растворителя (свинца Pb), что приводит к снижению его растворяющей способности; 2) структурно-фазовые (полиморфные) превра­щения кристаллических решёток сплавляемых компонентов, что также приводит к сниже­нию их взаимной растворимости друг в друге.

Окончательно охлаждённый сплав содержит только две фазы — кристаллы

α-твёрдого раствора и кристаллы β-твёрдого раствора. Каждый из этих видов кристаллов содержится как в мелкодисперсном состоянии в составе эвтектики (α + β), так и в виде более крупных фаз — α и β, равномерно распределённых по объёму сплава.

Для определения количественного соотношения структурно-фазовых составляющих при температуре 250ºC для сплава, содержащего 20% Sn и 80%

Pb, надо воспользоваться «правилом отрезков».

Для этого в замкнутой области ADC диаграммы на уровне температуры 250ºC проведём горизонтальную линию — коноду abf (рис. 1). Данная линия пересекает вертикальную ли­нию, характеризующую состав сплава (линию сплава), в точке b.

Количество твёрдой фазы Qтв. (количество выпавших кристаллов α-твёрдого раствора) при T = 250ºC определим из соотношения:

Q me = (bf/ af) х100% =58,06% .

Таким образом, количество твёрдой фазы Qтв. определяется отношением длины отрезка горизонтали (коноды), прилегающего к линии ликвидус ACB, ко всей длине горизонтали.

Количество жидкой фазы Qж при T = 250ºC определим из соотношения:

Qж = (af/аf) х 100% = 41,94%.

Количество жидкой фазы Qж определяется отношением длины отрезка горизонтали (коноды), прилегающего к линии солидус ADCEB, ко всей длине горизонтали.

Количественный состав выделяющихся при кристаллизации сплава первичных кри­сталлов α-твёрдого раствора при T = 250ºC определяется абсциссой точки a — 8% Sn + 92% Pb.

Количественный состав жидкой фазы при T = 250ºC определяется абсциссой точки f — 38% Sn + 62% Pb.

Количество образующейся эвтектики при T = 183ºC в точке 2′ составит:

Qэвт = (Dp/ DC) х 100% = 14,3%

Количество образующихся первичных кристаллов α-твёрдого раствора при T = 183ºC составит:

Qтв.= (pC / DC ) х 100% = 85,7%

Рис. 4. Микроструктура сплава «80% Pb + 20% Sn»

Б) Вычертить диаграмму состояния сплавов системы «железо Fe-углерод C» (рис. П.7). Указать основные линии, точки и структурно-фазовый состав всех областей диаграм­мы. Для сплава, содержащего 1,2% углерода C, построить кривую охлаждения и опи­сать происходящие при охлаждении структурно-фазовые превращения. Схематично изобразить и описать структуру заданного сплава.

На диаграмме железоуглеродистых сплавов (рис. 5) нанесены сплошные и пунктирные линии. Это связано с тем, что углерод в сплавах может находиться как в свободном виде (в виде графита), так и в виде химического соединения (цементита Fe3C). Поэтому, диаграмма состояния железоуглеродистых сплавов может быть:

1) система «Fe-Fe3C» (метастабильная);

2) система «Fe-C» (стабильная).

Характерные точки диаграммы:

А (Т= 1539ºC) — температура плавления чистого железа Fe;

В (Т= 1493ºC; 0,5%С) — состав жидкой фазы при перитектической реакции;

J (Т= 1493ºC; 0,18%С) — состав аустенита при перитектической реакции;

Н (Т= 1493ºC; 0,1%С) — состав феррита при перитектической реакции;

N (Т= 1392ºC) — температура полиморфного превращения железа Feα ↔ Feγ;

С (Т= 1147ºC; 4,3%С) — состав эвтектики (ледебурит = аустенит + цементит);

D (Т= 1600ºC; 6,67%С) — условная температура плавления цементита Fe3С;

Е (Т= 1147ºC; 2,14%С) — предельная растворимость углерода в γ-железе Fe;

G (Т= 911ºC) — температура полиморфного превращения железа Feγ ↔ Feα;

S (Т= 727ºC; 0,80%С) — состав эвтектоидного сплава (перлит = феррит + цементит);

Р (Т= 727ºC; 0,02%С) — предельная растворимость углерода в α-железе Feα;

К (Т= 727ºC; 6,67%С) — состав цементита;

Q (Т= 20ºC; 0,006%С) — минимальная растворимость углерода в железе.

Источник