Взаимодействие антифриза с медью

Совместим ли антифриз G12 с медными деталями

Изучаю вопрос теплообмена и дошел до выбора жидкости.

Вопрос с машиной совсем не связан. Ее пришлось мне указать.

В моей системе есть пластиковая помпа, алюминиевый теплоприемник и медный радиатор.

Мой выбор пал на антифриз G12. Не столько из-за температур, у меня они не будут ниже комнатных, сколько из-за долгосрочной системы.

Но вся проблема в том, что G12 органический и (не знаю как) вроде бы несовместим с медными элементами.

Суть вопроса. Есть система водяного охлаждения компьютера, самопальная с использованием радиатора тиберис 800 мм Х 600 мм Италия. В системе есть помпа. Вот за неё и боюсь. Поставил.

При любом антифризе(это всегда водный раствор), если в системе находятся медные и алюминиевые детали, то между ними происходит электролитическая реакция через воду в составе антифриза. Поскольку зачастую головка блока и водяная рубашка блока именно из алюминиевых сплавов, то желательно не иметь в системе медных деталей и деталей из медных сплавов(латунь, бронза).

Именно явление электроэррозии и выводит из строя детали системы охлаждения раньше времени. Собственно вы можете найти эти рекомендации в инструкциях по устройству водяного отопления жилых домов. То есть наличие пары алюминий-медь практически сводит к нулю свойства выбранного любого антифриза в плане долговечности системы.

@andrienko.1966 —> Понял, спасибо. Значит медный радиатор необходимо заменить на, соответственно, алюминиевый.

Источник

Взаимодействие антифриза с медью

Эффективность алюминиевого выше

Роман, ржать мы все мастера.
Давай непредвзято посмотрим. Как аргумент «лучшести» медных ты приводишь большую теплопроводность. Я как мог объясняю, что теплопроводность тут играет малую роль. Гораздо важнее площадь охлаждения. Аргументированые возражения есть, кроме зубоскальства?

ЗЫ Проконсультировался у наших спецов на работе. Так вот теперь утверждаю уже в категорической форме — у алюминиевых эффективность лучше, т.к. у медных пластины толще и набрано их гораздо меньше. Сомнительный козырь медных — большая долговечность (солевые коктейли они переносят лучше). Все. Больше плюсов нет. Ремонтопригодность еще может быть.

кстати, вот еще инфа для размышлений.

В наших машинах изначально ставились медные детали (в том числе и радиатор). И антифриз для них разрабатывался специальный — ТОСОЛ. В нем были присадки для меди, которые не позволяли ей корродировать. Но этот ТОСОЛ был агрессивен по отношению к алюминию. Именно поэтому от наших «экономщиков», которые в алюминиевые системы иномарок пытались заливать ТОСОЛ, и пошла молва, что наш антифриз — дерьмо. На самом деле импортный антифриз — такое же дерьмо, если залит в нашемарку, так как он расчитан на алюминевую систему, и агрессивен для меди.

Возможно, нынче все по другому, но 20-30 лет назад именно так и было.

Если ты поставишь медный радиатор в Гольф, где остальные детали — сплавы алюминия, то будешь в роли обезьяны, которая не могла разорваться между двумя группами — красивых и умных. Если ты в такой Гольф с медным радиатором нальешь импортный антифриз, то радиатор долго не протянет. Если нальешь отечественный ТОСОЛ, то радиатор будет жить очень долго, а вот помпу будешь менять частенько. Все это ИМХО, основанное на опыте автослесаря (правда очень давно не практикующего).

Выводы делай сам: стоит ли овчинка выделки?

у алюминиевых эффективность лучше, т.к. у медных пластины толще и набрано их гораздо меньше.

Ладно, пойдём по второму кругу .

Повторюсь, физические свойства:
Медь:
Плотность 8,96 г/см3
Удельная теплоёмкость 0,385 Дж/(K·моль)
Теплопроводность 401 Вт/(м·K)

Алюминий:
Плотность 2,6989 г/см3
Удельная теплоёмкость 0,900 Дж/(K·моль)
Теплопроводность 237 Вт/(м·K)

дак вот, из этого следует, что медь по Теплопроводности выиграет почти в два раза .

А по Удельная теплоёмкость почти в три раза . А вы знаете, что это за хар-ка . 😀 По этой хар-ке выбирают материалы для отопителей — чугун к примеру, камень в парилке и т.п.

Дак вот, общий вывод из физических свойств этих элементов:
Медь легко по площади может дыть почти два раза меньше чем алюминевый радиаторы .

у медных пластины толще и набрано их гораздо меньше

не выдерживает критики
Если толще — соответственно больше плошадь .
А то что меньше набрано, то легко компенсируется физическими свойствами и ещё прозапас останется .

Источник

Взаимодействие антифриза с медью

Не кипеть! из журнала «Авторевью»
Владимир Завьялов

«Что льёшь в радиатор – антифриз или тосол?» Смешно, но споров и заблуждений вокруг охлаждающей жидкости даже больше, чем по маслам и высокооктановому бензину, вместе взятым. И без углубления в теорию тут не разобраться.

ГЛИКОЛЬ ВМЕСТО ВОДЫ
А, собственно, зачем он нужен, антифриз? И вообще жидкостное охлаждение? На самом деле, во многих случаях можно было бы обходиться и воздушным охлаждением. Однако двигатели становились всё мощнее, тепловой режим всё более напряжённым. Так возникла идея передать функцию охлаждения двигателя отдельному устройству – радиатору. Только чтобы вся эта новая система заработала, нужно было решить новую задачу – передать тепло от двигателя к радиатору.
Для выполнения такой задачи идеально подходило вещество с большой теплоёмкостью, каким является вода. Однако вода закипает при 100° C и превращается в лёд уже при 0° C. При замерзании вода превращается в лёд, а объём её при этом увеличивается примерно на 9%. Давления, вызванного таким увеличением объёма, вполне достаточно не только для повреждения радиатора, но и для блока двигателя. Для того чтобы справиться с таким недостатком воды в системах охлаждения, появились сп

Примечательно, что в определении антифриза какой бы то ни было конкретный состав этой жидкости не приводится. Поэтому даже водка – яркий пример антифриза! Собственно говоря, до появления в 1927 году этиленгликоля этиловый спирт и был основным компонентом антифриза. Однако такой антифриз имел высокую испаряемость и огнеопасность. Этих недостатков был лишён этиленгликоль, что позволило ему удержать лидирующее место в качестве основы антифризов до наших дней.
Этиленгликоль (С2H4[OH]2) – вязкая бесцветная жидкость. Ядовитая, со сладковатым вкусом. Несмотря на то, что в чистом виде этиленгликоль имеет высокую температуру кипения (около 200° C), в таком виде он практически не используется. Причиной этого является относительно высокая температура кристаллизации, или, другими словами, замерзания, (около 12° C), а также низкая температура вспышки (около 120° C), делающая этиленгликоль пожароопасным веществом. А вот в соединении с водой – совсем другое дело. По мере разбавления этиленгликоля водой температура кристаллизации сначала падает, а после – снова возрастает. Минимальная температура кристаллизации –75° C достигается при соотношении этиленгликоля и воды в растворе 2:1.

Температура закипания рабочего раствора этиленгликоля в системе охлаждения колеблется в диапазоне 110–170° C. Не последнюю роль здесь играет тот факт, что антифриз в современных системах находится под давлением – это поднимает температуру кипения раствора примерно на 25° C вверх.
Сравнительно недавно в качестве альтернативы этиленгликолю в антифризах стал также использоваться пропиленгликоль (С3H6[OH]2) – вещество, имеющие сходные с этиленгликолем свойства, однако неядовитое, а также обладающее пониженной коррозионной активностью. Массовому использованию пропиленгликоля в антифризах сегодня препятствует его высокая в сравнении с этиленовым конкурентом цена.

ДАЁШЬ АНТИКОР!
Современный антифриз, помимо водно-гликолевой базы, содержит ещё ряд компонентов. И вот с ними как раз и связаны основные вопросы при выборе продукта.
Изначально применявшийся водный раствор этиленгликоля обладал повышенной коррозионной активностью, что негативно сказывалось на долговечности как деталей системы охлаждения, так и всего двигателя в целом. Высокая температура охлаждающей жидкости при работе двигателя приводила к образованию накипи. А при циркуляции антифриза в системе было обнаружено его негативное свойство вспениваться.

Накипь, как и любое другое твёрдое вещество, попавшее в систему охлаждения, способна повредить детали водяной помпы, в частности, её уплотнения, что может привести к течи антифриза. Пена ухудшает теплоёмкость антифриза, таким образом ухудшая его свойства как теплоносителя. С проблемами накипи и пены научились бороться довольно быстро с помощью пакетов соответствующих присадок, которые с успехом используются и по сей день. Куда драматичнее развивались события в направлении борьбы с коррозией – основным врагом систем жидкостного охлаждения.
При взаимодействии горячего водного раствора этиленгликоля с металлическими поверхностями и деталями системы охлаждения возникают все условия для успешного протекания коррозионных процессов. Последствия этих процессов для двигателя весьма печальны. Это и разрушение радиатора, и разрушение внутренних поверхностей двигателя, а также риск повреждения прочих деталей системы охлаждения. К большому сожалению, полностью исключить протекание коррозионных процессов в системах охлаждения производителям пока не удаётся, зато удаётся замедлить эти процессы настолько, чтобы на несколько лет эксплуатации двигателя о коррозии можно было бы забыть. Так замедлить коррозию позволяют ингибиторы – вещества, не участвующие в химической реакции, но замедляющие её протекание.
Со временем действие ингибиторов ослабевает. Кстати, срок службы антифризов (в среднем два года) зависит именно от «ресурса» ингибиторов. Как только этот ресурс истощается, коррозионные процессы начинают протекать всё активнее, и в скором времени антифриз меняет свой первоначальный цвет на характерный бурый.
Во времена начала использования этиленгликоля в качестве антифриза двигатели изготавливались преимущественно из чугуна, а радиаторы – из меди. Разумеется, первые антикоррозионные присадки разрабатывались именно в расчёте на обеспечение коррозионной устойчивости этих металлов.

В 80-е годы происходит бурный натиск алюминия на моторостроительную индустрию: алюминий начинают использовать для изготовления и блоков двигателя, и радиаторов. В данном случае по причине более высокой теплорассеивающей способности, нежели у латуни. Но алюминий весьма активен как металл, а значит, крайне неустойчив в отношении коррозии. В результате пакеты присадок антифризов пополняются силикатами и фосфатами, являющимися отличными ингибиторами коррозии алюминия. Но и они не лишены недостатков. Силикатные соединения могут провоцировать нежелательное гелеобразование, а это риск закупорки радиатора. Этого недостатка лишены фосфаты, но фосфаты могут давать нежелательный осадок при взаимодействии с жёсткой водой (для России более чем актуально). По этой причине в Европе запрещены антифризы, имеющие в составе фосфатные соединения. На самом деле, проблема решается использованием дистиллированной воды при приготовлении раствора из концентрата.
Наиболее современными ингибиторами коррозии, разработка которых пришлась на 90-е годы, являются солевые соединения на основе карбоновых кислот. Эти ингибиторы лишены недостатков силикатов и фосфатов, однако отмечены случаи негативного воздействия антифризов с такими пакетами присадок на материал прокладок (происходит размягчение прокладок, которое может являться причиной течи).

МЕШАТЬ ИЛИ НЕТ?
Современный антифриз для системы охлаждения – это всегда композиция из трёх компонентов: основа, вода и пакет присадок. Деление антифризов на типы происходит как раз в зависимости от различий в компонентах.
В продаже бывают как готовые к применению антифризы, так и концентраты. Последние требуют перед применением разбавления водой в правильном соотношении.
Далее антифризы делятся в зависимости от основы, на которой они изготовлены. Большинство (более 90%) изготовлено на основе этиленгликоля. Иногда встречаются пропиленгликолевые антифризы. Они более экологичны и менее опасны для двигателя, но стоят дороже.

Наконец, самое главное разделение антифризов происходит на основе используемых в них пакетов присадок, а точнее, присадок, обеспечивающих коррозионную устойчивость чугуна и алюминия перед раствором антифриза. Здесь выделяют три типа антифризов:
Неорганические. Своему названию они обязаны используемым в них присадкам, имеющим неорганическое происхождение. К таким присадкам, в частности, относятся вышеупомянутые аммониевые соли, бораты, нитриты, силикаты и фосфаты. В Европе применение фосфатов в антифризах запрещено, поэтому антифризы этой группы в зависимости от производителя всегда немного отличаются друг от друга. Несомненным достоинством антифризов этого типа является оперативность их действия в отношении борьбы с коррозией. Антифризы этой группы маркируются G11 или G48.
Органические. Этот тип антифризов использует самые современные антикоррозионные присадки на основе органических, карбоновых кислот, но при этом не содержат неорганических присадок, в частности, фосфатов и силикатов. Органические антифризы действуют намного медленнее, но зато более продолжительное время. Благодаря этому антифризы этой группы зачастую имеют увеличенный срок службы (до пяти лет). Присадки, используемые в антифризах данного типа, лишены недостатков, характерных для неорганических антикоррозионных присадок. Антифризы этой группы маркируются G12, G12+, G30, G33 и G34.
Гибридные. Такие антифризы имеют маркировку G05. В состав этих антифризов входят как органические, так и неорганические присадки (главным образом, силикаты), но не входят фосфаты.

Разумеется, все три группы антифризов содержат и некоторые другие присадки, однако основания для разделения антифризов на группы именно такие, как приведены выше.
Обязательно ли смешивать антифриз с водой? Если вы приобретаете концентрат, то обязательно. Если этого не сделать, охлаждающая жидкость не будет соответствовать предъявляемым к ней требованиям, в частности, будет иметь температуру замерзания около –10° C вместо положенных –40° C. Стоит учесть, что жёсткая вода, характерная для нашей страны, может вступать во взаимодействие с присадками антифризов, негативным результатом чего будет выпадение осадка. Для предотвращения такого риска для разбавления антифриза следует использовать дистиллированную воду. Как правило, производители предоставляют специальные таблицы с данными о возможных соотношениях концентрата и воды, а также получаемых при этом свойствах. Ищите такие таблицы на этикетках антифриза.

Общая схема замены антифриза в системе охлаждения проста. Необходимо удалить из неё весь старый раствор, а затем заполнить новым. Для более качественной замены рекомендуется также промыть систему водой, прежде чем заполнять новым антифризом, особенно если переходите с одного типа на другой. Промывание водой позволит удалить все остатки старого раствора.
Существуют также и специальные средства для очистки системы. В отличие от воды они очищают систему химическим путём, разрушая отложения, сформировавшиеся за время эксплуатации двигателя. Подробные инструкции по их использованию даются производителями таких средств. Не следует переусердствовать и использовать такие средства без необходимости.
В процессе эксплуатации уровень антифриза может падать, поэтому со временем возникает необходимость восстанавливать его уровень. Если уровень антифриза падает при нормальной эксплуатации, лучше восстанавливать его водой: уровень упал из-за её испарения, в то время как гликолевая основа осталась. Если же уровень падает в результате течи, то восстанавливать его следует с помощью антифриза.

Очень много мнений и споров о совместимости антифризов и критериях её определения. Так, бытует мнение, что жёлтый, зелёный и синий антифризы совместимы, и их можно смешивать друг с другом, в то время как красный нельзя смешивать ни с каким иным. Мнение ошибочное. На производителей не наложено никаких обязательств по окрашиванию антифризов разных типов в определённые цвета, делается это на своё усмотрение.
Проблемы с совместимостью возникают из-за различия в пакетах используемых присадок. Взаимодействуя друг с другом, они могут вызывать выпадение нежелательного осадка. К сожалению, если нет информации о совместимости от производителя, без анализа составов двух антифризов точно определить их совместимость нельзя. А потому – если не знаете, каким антифризом заправлена система, лучше произвести замену всей охлаждающей жидкости. Не стоит также смешивать и антифризы, изготовленные на различной основе – этиленгликолевые и пропиленгликолевые.
Как правильно выбрать антифриз? Лучшая рекомендация здесь – рекомендация производителя техники. Оптимальный выбор зависит от материалов, применяемых в системе охлаждения, теплового режима двигателя, а также ещё ряда параметров, которые лучше всего известны производителю. В прессе можно встретить интересные независимые тесты антифризов на соответствие их свойств нормам различных стандартов. Стоит отметить, что некоторые производители предлагают антифризы специально для мототехники, не ссылаясь при этом, однако, на их отличия от «универсальных» антифризов других производителей. Это наводит на мысли о том, что отличия здесь, скорее, в позиционировании, чем в составе используемых компонентов.

Во времена начала использования этиленгликоля в качестве антифриза двигатели изготавливались преимущественно из чугуна, а радиаторы – из меди. Разумеется, первые антикоррозионные присадки разрабатывались именно в расчёте на обеспечение коррозионной устойчивости этих металлов.

В 80-е годы происходит бурный натиск алюминия на моторостроительную индустрию: алюминий начинают использовать для изготовления и блоков двигателя, и радиаторов. В данном случае по причине более высокой теплорассеивающей способности, нежели у латуни.

Источник

Медные трубы: универсальный продукт для строительства

В. С. Ионов, исполнительный директор НП «Национальный центр меди»

О медных трубах в строительстве в последнее время написано немало. Важно другое: практикующие специалисты оценили преимущества этого проверенного десятками лет материала и все больше рачительных заказчиков требуют устройства различных инженерных систем именно с использованием медных труб. НП «Национальный Центр Меди» и журнал «Сантехника» продолжают отвечать на вопросы практикующих специалистов в связи с применением в строительстве медных труб. Сегодня публикуются ответы на вопросы, относящиеся к тем областям, которые напрямую еще не отрегулированы нормативными документами, в первую очередь СП 40–108–2004 и СП 42–102–2004. К таким областям применения относится использование медной продукции в солнечных водонагревательных системах, напольном и панельном отоплении, в некоторой степени в газоснабжении.

Просим направлять ваши вопросы по e-mail: vopros@abok.ru

Вопрос:

О применении медных труб в газоснабжении. СНиП и СП 42–102–2004 разрешают применение медных труб в газораспределительных сетях низкого давления. Каковы преимущества и недостатки таких труб по сравнению с традиционными и почему для газоснабжения в России применяется другой тип труб, нежели в водоснабжении? Мы слышали, что в Европе в газоснабжении применяются те же трубы, что и в водоснабжении и отоплении.

Ответ:

Начнем со второй части вопроса. На самом деле с 1 января 2006 года введен в действие новый ГОСТ Р 52318–2005 «Трубы медные бесшовные круглого сечения для воды и газа. Технические условия», который устанавливает требования производства для единого универсального продукта – медных труб для воды и газа. Данный ГОСТ вводится впервые, а до его введения в России производство медных труб осуществлялось как по ГОСТ «Трубы медные круглые общего назначения», так и по ТУ двух специализированных производителей: Ревдинского ЗОЦМ и Кольчугинского ЗОЦМ им. С. Орджоникидзе. Импортная продукция была представлена изделиями европейского стандарта EN 1057. Из такого многообразия производственных стандартов вытекало многообразие обозначений, видов и способов маркировки. С введением ГОСТ 52318–2005 этой нормативной чехарде был положен конец.

И для газа, и для воды предназначены только медные трубы по упомянутому ГОСТ Р и европейскому EN 1057, с которым российский ГОСТ гармонизирован. Данный ГОСТ действительно устанавливает весьма жесткие требования к производственным процессам, испытаниям и технологическому контролю именно в связи с универсальным применением труб для воды и газа. Так, например, по требованию специалистов в области газоснабжения 100 % продукции проходит заводские испытания на герметичность давлением – требование, отсутствовавшее в ТУ заводов-изготовителей. В настоящее время производится техническая коррекция соответствующих разделов СП 42–102–2004 (маркировка, применимые стандарты производства), который был принят до введения ГОСТ 52318–2005. Таким образом, сегодня в России, как и в Европе для воды и газа используются одни и те же медные трубы.

Говоря о преимуществах и недостатках медных труб в газоснабжении можно сказать следующее: к преимуществам относятся более длительный срок безаварийной службы, повышенная надежность как всей системы, так, в частности, и соединений, простота монтажа и повышенная устойчивость как к внутренней, так и внешней коррозии. Особо отметим такое свойство, как высокая пластичность при сохранении достаточной механической прочности, свойственной металлам, причем такая пластичность, в отличие от большинства других металлов и стали в частности, сохраняется при отрицательных температурах. Это свойство имеет большое практическое значение в сейсмически опасных районах и постройках с повышенным уровнем вибраций и иных переменных механических воздействий. К недостаткам можно условно отнести все-таки меньшую механическую прочность, чем у стальных труб, там, где такая механическая прочность может быть необходима. При этом следует помнить, что в большинстве случаев при механических воздействиях востребовано все-таки свойство высокой пластичности.

Вопрос:

Почему нормативные документы по меди в газовых сетях упоминают только высокотемпературную пайку? В иностранной литературе разрешается также брейзинг – пайка серебряным припоем. А как же традиционная пайка?

Ответ:

В англоязычной и другой иностранной литературе в разных странах встречаются различные термины, обозначающие один и тот же процесс. Сущность применяемых технологий соединения не меняется.

Существует два вида капиллярной пайки при соединении медных труб и арматуры: низкотемпературная (мягким припоем, мягкая, soft soldering, soldering) и высокотемпературная (твердым припоем, твердая, серебряным припоем, brazing, silver brazing). В газоснабжении применяется только высокотемпературная, в отличие от водоснабжения, где применяются оба вида (с ограничением по применению высокотемпературной пайки для малых диаметров). Несмотря на единые принципы этих видов капиллярных соединений, в технологии исполнения между ними есть значительная разница, и мы рекомендуем ознакомиться с технологией высокотемпературной пайки детально. Сказанное не означает, что высокотемпературная капиллярная пайка более трудоемка или сложна, однако у нее есть свои особенности, о которых следует знать, поскольку газ не прощает некомпетентности.

Вопрос:

Мы выполнили на нескольких объектах систему отопления с использованием твердых, полутвердых и даже мягких труб фирм [перечислены производители]. Если мягкие трубы мы приобрели в полимерной защитной теплоизоляции, то твердые и полутвердые такой изоляции не имели и после пайки в местах нагрева выглядят не очень красиво. А в некоторых местах, даже где пайки нет, все равно на золотистой поверхности появились темные пятна. Как это объяснить заказчику?

Ответ:

Отрадно, что вы использовали часть труб с заводским защитным теплоизолирующим слоем. Поскольку речь идет о системе отопления, то напомним, что текст пусть уже не действующего СНиП требует тепловой изоляции всех трубопроводов систем отопления по весьма прозаичной причине – для снижения непроизводительных теплопотерь, предотвращения ожогов и по ряду иных причин. Поэтому даже при использовании «голых» медных труб следовало бы установить такую изоляцию на всю оставшуюся часть системы, которая предлагается множеством сторонних производителей. В этом случае одновременно решается и эстетический вопрос.

Если говорить только об эстетике, то следует помнить, что возникновение потемнений в местах нагрева, появление пятен с цветами побежалости не влияет на качество, надежность и сроки службы труб, арматуры и соединений. Но, действительно, при открытой прокладке труб темные пятна не хорошо смотрятся. Поэтому трубы в таком случае следует просто покрасить. Появление пятен на золотистой поверхности неизбежно, решением же является либо окраска, либо ожидание, поскольку со временем трубы изменят золотистый цвет на темно-коричневый, и пятна сольются с общим цветом трубы. Существуют способы поддержания золотистого цвета медных труб, применямых в тех случаях, когда они одновременно являются элементом дизайна помещения, однако это востребовано в редких случаях и не имеет отношения к функциональным свойствам труб. Эта процедура в деталях известна дизайнерским студиям.

Вопрос:

В публикациях об установке медных солнечных коллекторов для ГВС и отопления встречается рекомендация по применению в обвязке медных труб с соединением твердой пайкой или сваркой. Почему рекомендуются медные трубы, понятно. Неясно, почему забыли о простой капиллярной пайке?

Ответ:

Приведенные вами рекомендации верны. Следует напомнить, что солнечные коллекторы на основе медных черненых пластин обладают высокой степенью поглощения солнечного излучения (в соответствующей части спектра), в результате чего рабочая температура теплоносителя в первом контуре в отдельные периоды может достигать 300 °С. Собственно, это и обуславливает функциональность и популярность системы с медными поглощающими пластинами – высокий КПД. Однако высокая эффективность предъявляет повышенные требования к теплостойкости всех элементов первого контура. «Простая» капиллярная пайка, т. е. низкотемпературная пайка мягким припоем в данном случае неприменима, поскольку температура плавления такого припоя около 200–230 °С. А вот во втором и, если требуется, в третьем контуре применение низкотемпературной пайки не ограничивается. Поскольку, как видно из вашего вопроса, вы не были осведомлены о подобных возможных температурах в первом контуре, рекомендуем обратить внимание на теплостойкость других элементов конструкции, в том числе крепежа, а также защитной изоляции.

Вопрос:

При использовании медных труб в «теплых полах» напрашивается применение антифриза. Какие у меди есть ограничения, требования к специальным антифризам для меди?

Ответ:

Этот вопрос в той или иной степени уже обсуждался, но раз он вновь возникает, следует его вновь прокомментировать. Применение антифризов как дополнительной меры защиты системы отопления на случай аварийного замораживания оправдано. Тем более оправдано оно для напольных и панельных систем, поскольку устранение неисправности в этом случае сопряжено со значительными затратами и неудобством.

Медным трубам не требуется применение специальных антифризов – достаточно обычных. Обычные антифризы имеют пакет присадок, подавляющие агрессивное воздействие гликолей на сталь, латунь, медь, припой, чугун, алюминий и ряд других. Контрафактные и некондиционные антифризы такими свойствами не обладают. Соответственно первейшее правило для обеспечения сохранности всей системы отопления независимо от того, из какого материала выполнена трубная часть, – удостовериться в качестве используемого антифриза. Как это сделать – тема отдельного разговора, и такой разговор давно ведется на страницах автомобильных журналов (для автомобилистов это очень актуальная проблема) и форумах обществ потребителей.

Второе правило (не менее важное, чем первое): в ходе эксплуатации действие пакетов упомянутых присадок снижется и восстанавливается подавленное этими присадками агрессивное воздействие гликолей на металлы при том, что низкотемпературные свойства такого антифриза не меняются. Это означает, что антифризы периодически приходится менять. Вопрос только в сроках замены. Здесь приходится констатировать, что не все производители даже качественных антифризов дают верные детальные сведения о сроках службы своей продукции при различных условиях эксплуатации, в первую очередь температурного режима. В качестве общего правила, для низкотемпературных систем, к которым относится напольное и панельное отопление, следует исходить из гарантийных сроков, объявляемых производителями (их обязанность по закону), который обычно составляет 4–7 лет. Впрочем, это не исключает права потребовать от конкретного продавца и производителя более точных сведений об эксплуатационных характеристиках продукта. Для больших систем, как, например, система подобного медному напольного отопления Минского железнодорожного вокзала, представляется оправданным проведение анализов образцов антифриза системы для более точного определения момента смены антифриза. Негодный антифриз может испортить все металлические элементы системы отопления.

Вопрос:

Куда можно направить наших монтажников для обучения приемам монтажа газовых систем? Если такое учреждение существует, выдают ли там свидетельства или дипломы, признаваемые Госгортехнадзором?

Ответ:

В самом ближайшем будущем планируется проведение серии курсов в учебном центре при «ГИПРОНИИГАЗа» (Саратов) – профильном учреждении по подготовке специалистов в области монтажа газовых систем. Соответствующие официальные документы, выдаваемые закончившим курсы и успешно сдавшим экзамены, разумеется, будут иметь соответствующий вес в контрольных органах. Отвечая на незаданный вопрос, сообщим, что подобные курсы для специалистов в области устройства систем водоснабжения (отполения) планируется открыть во втором квартале, сначала в Москве. Информация об этих учебных мероприятиях будет активно распространяться как в профессиональных СМИ, так и в сети Интернет.

Поделиться статьей в социальных сетях:

Источник