Взаимодействие меди с соляной кислотой что наблюдали

Тренажер задания 31 по химии меди

Тренажер задания 31 из ЕГЭ по химии меди, задачи на неорганическую химию (мысленный эксперимент) из экзамена ЕГЭ по химии, задания 31 по химии меди с текстовыми решениями и ответами.

1) Через раствор хлорида меди (II) с помощью графитовых электродов пропускали постоянный электрический ток. Выделившийся на катоде продукт электролиза растворили в концентрированной азотной кислоте. Образовавшийся при этом газ собрали и пропустили через раствор гидроксида натрия. Выделившийся на аноде газообразный продукт электролиза пропустили через горячий раствор гидроксида натрия. Напишите уравнения описанных реакций.

2) Вещество, полученное на катоде при электролизе расплава хлорида меди (II), реагирует с серой. Полученный продукт обработали концентрированной азотной кислотой, и выделившийся газ пропустили через раствор гидроксида бария. Напишите уравнения описанных реакций.

3) Неизвестная соль бесцветна и окрашивает пламя в желтый цвет. При легком нагревании этой соли с концентрированной серной кислотой отгоняется жидкость, в которой растворяется медь; последнее превращение сопровождается выделением бурого газа и образованием соли меди. При термическом распаде обеих солей одним из продуктов разложения является кислород. Напишите уравнения описанных реакций.

4) При взаимодействии раствора соли А со щелочью было получено студенистое нерастворимое в воде вещество голубого цвета, которое растворили в бесцветной жидкости Б с образованием раствора синего цвета. Твердый продукт, оставшийся после осторожного выпаривания раствора, прокалили; при этом выделились два газа, один из которых бурого цвета, а второй входит в состав атмосферного воздуха, и осталось твердое вещество черного цвета, которое растворяется в жидкости Б с образованием вещества А. Напишите уравнения описанных реакций.

5) Медную стружку растворили в разбавленной азотной кислоте, и раствор нейтрализовали едким кали. Выделившееся вещество голубого цвета отделили, прокалили (цвет вещества изменился на черный), смешали с коксом и повторно прокалили. Напишите уравнения описанных реакций.

6) В раствор нитрата ртути (II) добавили медную стружку. После окончания реакции раствор профильтровали, и фильтрат по каплям прибавляли к раствору, содержащему едкий натр и гидроксид аммония. При этом наблюдали кратковременное образование осадка, который растворился с образованием раствора ярко-синего цвета. При добавлении в полученный раствор избытка раствора серной кислоты происходило изменение цвета. Напишите уравнения описанных реакций.

7) Оксид меди (I) обработали концентрированной азотной кислотой, раствор осторожно выпарили и твердый остаток прокалили. Газообразные продукты реакции пропустили через большое количество воды и в образовавшийся раствор добавили магниевую стружку, в результате выделился газ, используемый в медицине. Напишите уравнения описанных реакций.

8) Твердое вещество, образующееся при нагревании малахита, нагрели в атмосфере водорода. Продукт реакции обработали концентрированной серной кислотой, внесли в раствор хлорида натрия, содержащий медные опилки, в результате образовался осадок. Напишите уравнения описанных реакций.

9) Соль, полученную при растворении меди в разбавленной азотной кислоте, подвергли электролизу, используя графитовые электроды. Вещество, выделившееся на аноде, ввели во взаимодействие с натрием, а полученный продукт реакции поместили в сосуд с углекислым газом. Напишите уравнения описанных реакций.

10) Твердый продукт термического разложения малахита растворили при нагревании в концентрированной азотной кислоте. Раствор осторожно выпарили, и твердый остаток прокалили, получив вещество черного цвета, которое нагрели в избытке аммиака (газ). Напишите уравнения описанных реакций.

11) К порошкообразному веществу черного цвета добавили раствор разбавленной серной кислоты и нагрели. В полученный раствор голубого цвета приливали раствор едкого натра до прекращения выделения осадка. Осадок отфильтровали и нагрели. Продукт реакции нагревали в атмосфере водорода, в результате чего получилось вещество красного цвета. Напишите уравнения описанных реакций.

12) Неизвестное вещество красного цвета нагрели в хлоре, и продукт реакции растворили в воде. В полученный раствор добавили щелочь, выпавший осадок голубого цвета отфильтровали и прокалили. При нагревании продукта прокаливании, который имеет черный цвет, с коксом было получено исходное вещество красного цвета. Напишите уравнения описанных реакций.

13) Раствор, полученный при взаимодействии меди с концентрированной азотной кислотой, выпарили и осадок прокалили. Газообразные продукты полностью поглощены водой, а над твердым остатком пропустили водород. Напишите уравнения описанных реакций.

14) Черный порошок, который образовался при сжигании металла красного цвета в избытке воздуха, растворили в 10%-серной кислоте. В полученный раствор добавили щелочь, и выпавший осадок голубого цвета отделили и растворили в избытке раствора аммиака. Напишите уравнения описанных реакций.

15) Вещество черного цвета получили, прокаливая осадок, который образуется при взаимодействии гидроксида натрия и сульфата меди (II). При нагревании этого вещества с углем получают металл красного цвета, который растворяется в концентрированной серной кислоте. Напишите уравнения описанных реакций.

16) Металлическую медь обработали при нагревании йодом. Полученный продукт растворили в концентрированной серной кислоте при нагревании. Образовавшийся раствор обработали раствором гидроксидом калия. Выпавший осадок прокалили. Напишите уравнения описанных реакций.

17) К раствору хлорида меди (II) добавили избыток раствора соды. Выпавший осадок прокалили, а полученный продукт нагрели в атмосфере водорода. Полученный порошок растворили в разбавленной азотной кислоте. Напишите уравнения описанных реакций.

Читайте также:  Необычный способ очистить медь

18) Медь растворили в разбавленной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали серной кислотой до появления характерной голубой окраски солей меди. Напишите уравнения описанных реакций.

19) Медь растворили в концентрированной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали избытком соляной кислоты. Напишите уравнения описанных реакций.

20) Газ, полученный при взаимодействии железных опилок с раствором соляной кислоты, пропустили над нагретым оксидом меди (II) до полного восстановления металла. полученный металл растворили в концентрированной азотной кислоте. Образовавшийся раствор подвергли электролизу с инертными электродами. Напишите уравнения описанных реакций.

21) Йод поместили в пробирку с концентрированной горячей азотной кислотой. Выделившийся газ пропустили через воду в присутствии кислорода. В полученный раствор добавили гидроксид меди (II). Образовавшийся раствор выпарили и сухой твердый остаток прокалили. Напишите уравнения описанных реакций.

22) Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. выпавший синий осадок отфильтровали, просушили и прокалили. Полученное при этом твердое черное вещество в стеклянную трубку, нагрели и пропустили над ним аммиак. Напишите уравнения описанных реакций.

23) Оксид меди (II) обработали раствором серной кислоты. При электролизе образующегося раствора на инертном аноде выделяется газ. Газ смешали с оксидом азота (IV) и поглотили с водой. К разбавленному раствору полученной кислоты добавили магний, в результате чего в растворе образовалось две соли, а выделение газообразного продукта не происходило. Напишите уравнения описанных реакций.

24) Оксид меди (II) нагрели в токе угарного газа. Полученное вещество сожгли в атмосфере хлора. Продукт реакции растворили в в воде. Полученный раствор разделили на две части. К одной части добавили раствор иодида калия, ко второй – раствор нитрата серебра. И в том, и в другом случае наблюдали образование осадка. Напишите уравнения описанных реакций.

CuO + CO → Cu + CO2

2CuCl2 + 2KI = 2CuCl↓ + I2 + 2KCl

25) Нитрат меди (II) прокалили, образовавшееся твердое вещество растворили в разбавленной серной кислоте. Раствор полученной соли подвергли электролизу. Выделившееся на катоде вещество растворили в концентрированной азотной кислоте. Растворение протекает с выделением бурого газа. Напишите уравнения описанных реакций.

26) Щавелевую кислоту нагрели с небольшим количеством концентрированной серной кислоты. Выделившийся газ пропустили через раствор гидроксида кальция. В котором выпал осадок. Часть газа не поглотилась, его пропустили над твердым веществом черного цвета, полученным при прокаливании нитрата меди (II). В результате образовалось твердое вещество темно-красного цвета. Напишите уравнения описанных реакций.

CuO + CO → Cu + CO2

27) Концентрированная серная кислота прореагировала с медью. Выделившийся при газ полностью поглотили избытком раствора гидроксида калия. Продукт окисления меди смешали с расчетным количеством гидроксида натрия до прекращения выпадения осадка. Последний растворили в избытке соляной кислоты. Напишите уравнения описанных реакций.

Источник

Реакция металлов с соляной кислотой: признак взаимодействия цинка, железа и меди

Известно доказанный факт, что соляная кислота взаимодействует с активными металлами. При этом часть веществ способна реагировать на такое соединение, другая часть остается нетронутой.

Неактивные металлы не могут реагировать на вещество: к ним относят золото, серебро, ртуть.

Соляная кислота представляет собой соединение хлора и водорода. Путем растворения в воде газообразного вещества под названием хлороводород получается данное соединение.

Ионы водорода при таком уравнении исполняют роль окислителя, что вызывает реакцию у активных металлов.

Какие вещества вступают в реакцию с соляной кислотой

На вступительных экзаменах по химии часто можно встретить задание на определение веществ, которые способны реагировать на соляную кислоту.

Кроме того, задание «составьте уравнение» нередко вызывает страх в глазах выпускников.

Чтобы не путаться с химическими задачами, рекомендуется подробнее изучить информацию о взаимодействии с данным соединением.

Все существующие вещества можно поделить на металлы, вытесняющие водород из соединения, не вытесняющие водород, а также активные и неактивные металлы.

В реакцию с соляной кислотой вступают такие вещества:

    Химические основания. Соляная кислота способна нейтрализовать основания. Как известно, они состоят из атома металла, на который и воздействует кислота.

К ним относят гидроксид натрия, бария, алюминия. Реакция нейтрализации дает образования соли и воды.
Металлы. Если обратиться к электрохимическому ряду, можно увидеть, что соляная кислота реагирует со всеми элементами, стоящими до водорода в этом ряду.

Сюда относят натрий, магний, алюминий, литий, барий, кальций, цинк, железо и другие элементы. При взаимодействии они образуют хлориды и выделяют газообразный водород.

  • Основные и атмосферные оксиды. Во время реакции происходит образование растворимых солей и воды. HCl взаимодействует с оксидом алюминия, меди, цинка, натрия.
  • Карбонаты. При взаимодействии с карбонатами кальция получится следующее уравнение: Ca­CO₃ + 2HCl→ Ca­Cl₂ + CO₂↑ + H₂O.

    Из него следует, что выделяется углекислый газ, а также образуется вода и угольная кислота.

  • Сильные окислители. Если вещество взаимодействует с перманганатом калия или диоксидом марганца, на выходе получается выделение газообразного хлора.
  • Аммиак. Такое взаимодействие ознаменовано выделением сильного дыма, поэтому в момент проведения опытов рекомендуется открыть все окна. Тогда выделяется хлорид аммония.
  • Читайте также:  Глицинат меди что это такое

    Признак взаимодействия с цинком, железом и другими металлами

    Если курс школьной химии был успешно забыт, можно вспомнить о том, какие бывают признаки взаимодействия металлов, вступающих в реакцию с соляной кислотой.

    Чтобы экспериментальные опыты не вызвали несчастного случая, рекомендуется заранее открыть все окна, вооружиться защитной одеждой, чтобы кожа рук была закрыта.

    Также рекомендуется использовать перчатки и повязку на лицо.

    Обратите внимание! Ниже будет рассказано о том, какие признаки говорят о вступлении в реакцию элементов с соединением.

    Чтобы не проводить наглядные опыты, можно воспользоваться теоретической информацией.

    Рассмотрим, что происходит, если добавить немного кислоты на определенный вид металла:

    Металл Признак взаимодействия
    Цинк Если опустить этот металл серебристого цвета в пробирку с указанным веществом, можно постепенно наблюдать выделение небольшого количества пузырьков и водорода.

    В результате возникает хлорид цинка Zn­Cl₂ Железо Во время такого взаимодействия образуется хлористое железо.

    Реакция происходит медленно, однако, если пробирку подогреть, то процесс пойдет быстрее Литий При реакции образуется хлорид лития 2Li­Cl, выделяется водород.

    На поверхности этого металла, относящегося к щелочной группе, можно увидеть маленькие пузыри Кремний В результате такого соединения возникает сложный компонент под названием хлорсилан.

    Также выделяется газообразный водород. Такая реакция происходит при условии нагревания до 350 градусов, а в качестве катализатора выступает медь Магний При таком взаимодействии наблюдает выделение теплоты, металл начинает плавиться

    Как составить уравнение реакции

    Одно из самых распространенных заданий на экзаменах и в контрольных работах – составить уравнение на реакцию HCl, в данном случае – соляной, с другими веществами или соединениями.

    Чтобы не запутаться в решении, предлагаем несколько советов и шпаргалок для легкого запоминания:

    • Запомните буквенное обозначение данного вещества – соляная кислота в химии обозначается как HCl: если вещество разбавленное, это указывается в скобках рядом.
    • Как уже было сказано выше, вещество способно реагировать с активными металлами, стоящими до водорода в электрохимическом ряду; кроме того, она реагирует на основания, оксиды, гидроксиды и карбонаты.
    • Химические основания обозначаются как OH, оксиды – O, гидроксиды – OH2, карбонаты – CO3.
    • Уравнение реакции всегда будет иметь знак +, потому как в процессе взаимодействия происходит соединение нескольких компонентов.
    • HCl может идти первым или вторым слагаемым, после прибавления металла, вещества идет знак =, после этого описывается реакция, где указаны продукты распада.
    • Например, при реакции кислоты серы с сульфатом магния получается такое уравнение: Mg+H2SO4 = MgSO4+H2.
    • Соляная кислота и гидроксид бария дают такое уравнение: 2HCl + Ba(OH)2 = BaCl2 + 2H2O.
    • При реакции соединения водорода, хлора и мела образуется хлорид кальция: СаСО3 + 2HCl = CaCl2 + СО2 + Н2О.
    • Раствор карбоната натрия с кислотой выглядит так: HCl+Na2CO3=2NaCl+H2O+CO2.

    Составить уравнение несложно, важно изначально правильно обозначить буквенные символы каждого элемента или вещества.

    Для правильного уравновешивания формулы пользуются правилами школьного курса химии, основанными на математическом принципе расстановки коэффициентов.

    Полезное видео

    Источник

    Тема исследовательской работы: Медь — биогенный элемент. Изучение механизма растворения меди в соляной кислоте и получение ее солей (I) (стр. 4 )

    Из за большого объема этот материал размещен на нескольких страницах:
    1 2 3 4

    H2[CuCl4] + Cu = 2H[CuCl2]

    Во второй бутылочке раствор свободно контактировал с воздухом. В ней притекали

    Медная проволока в концентрированном растворе соляной кислоты

    две противоположные реакции. В нижнем слое жидкости H2[CuCl4] восстанавливался металлической медью до H[CuCl2], а возле поверхности раствора происходил обратный процесс: H[CuCl2] окислялся кислородом до H2[CuCl4]. 4H[CuCl2] + 8HCl + O2 = > 4H2[CuCl4] + 2H2O

    В системе установилось динамическое равновесие между Cu(II) и Cu(I), которое легко нарушить. Если плотно закрыть бутылочку, то кислород в ней постепенно израсходуется, и медь в растворе перейдет в бесцветный комплекс H[CuCl2]. Если же наоборот открыть ватный тампон и встряхивать содержимое (а еще лучше – барботировать через раствор воздух), то медная проволока со временем растворится с образованием окрашенного H2[CuCl4].

    На этом и основан механизм растворения меди в соляной кислоте в присутствии воздуха. Сначала под действием кислорода медь окисляется, образуя немного оксида Cu2O. Оксид растворяется в кислоте и переходит в хлоридный комплекс меди (I) — H[CuCl2], который под действием кислорода превращается в H2[CuCl4]. Последний восстанавливается медью до H[CuCl2]. Медь при этом растворяется. Кислород воздуха снова окисляет H[CuCl2] до H2[CuCl4] и процесс повторяется до тех пор, пока не закончится один из реагентов.

    В пробирку с аммиаком добавили несколько капель раствора, полученного действием конц. HCl на медь в присутствии воздуха. При стоянии окраска синего раствора значительно усилилась

    Это обусловлено тем, что в растворе одновременно присутствовали Cu(I) и Cu(II). Одновалентная медь образует с аммиаком бесцветный комплекс [Cu(NH3)2](OH), который при стоянии на воздухе окисляется до синего [Cu(NH3)4](OH)2 и интенсивность окраски раствора возрастает.

    После экспериментов у нас остался солянокислый раствор хлорида меди (II).

    2.2. Получение солей меди (I)

    Хлорид меди (I) CuCl

    Как было сказано в предыдущем пункте, при реакции металлической меди с хлоридом меди (II) в соляной кислоте образуется растворимый комплекс одновалентной меди H[CuCl2]. Выделить CuCl из такого раствора очень просто –достаточно разбавить его большим количеством воды. В результате комплекс разрушится, и хлорид меди (I) выпадет в виде белого осадка.

    На дно колбы насыпаем кусочки медной проволоки (очищенные от лака) или медную стружку. Заливаем медь солянокислым раствором CuCl2, который мы получили в прошлом эксперименте (растворение меди в смеси HCl + H2O2). Неплотно накрываем колбу стеклянной пробкой и нагреваем (жидкость должна слегка кипеть).

    Реакция меди с солянокислым раствором CuCl2

    Буквально через несколько минут станет заметно, что раствор бледнеет. При дальнейшем кипячении раствор обесцветится.

    CuCl2 + Cu = 2CuCl CuCl + HCl = H[CuCl2]

    Для того чтобы сместить равновесие последней реакции влево, выливаем

    содержимое колбы в стакан с большим количеством воды. Перед экспериментом воду прокипятили и охладили в условиях минимального контакта с воздухом.

    Это необходимо, чтобы уменьшить окисление одновалентной меди.

    В результате содержимое колбы станет молочно-белым, а через несколько минут выпадет осадок. Декантрируем раствор с осадка, добавляем в колбу небольшое количество дистиллированной воды и быстро переносим содержимое колбы на фильтр. После того, как раствор отфильтруется, полезно промыть продукт спиртом или ацетоном – это уменьшит окисление. Но для некоторых экспериментов фильтровать CuCl совсем не обязательно – можно использовать его суспензию в воде.

    К суспензии хлорида меди добавим раствор едкого натра. Образуется желтый

    осадок гидроксида меди (I) CuOH:

    CuCl + NaOH = CuOH + NaCl

    Если стакан слегка подогреть на плитке, осадок станет красно-коричневого цвета

    – в результате образования Cu2O:

    2CuOH = Cu2O + H2O

    Теперь к суспензии хлорида одновалентной меди добавим раствор аммиака.

    Осадок растворится, раствор станет слегка синим. Но уже через несколько минут окраска раствора будет темно-синей (объяснение дано в п.2.2)..

    Взаимодействие CuCl с раствором аммиака

    CuClт + 2NH3.H2Oж = [Cu(NH3)2]Clр

    На воздухе влажный CuCl быстро окисляется, в результате белый осадок

    становится голубым и зеленым.

    Окисление влажного CuCl на воздухе

    Сульфат меди (I) Cu2SO4

    Сначала попробуем получить сульфат одновалентной меди аналогично хлориду.

    Для этого в колбочке прокипятили кусочки медной проволочки с раствором CuSO4, подкисленным серной кислотой. Легко убедиться, что никакой реакции не происходит –даже при длительном нагревании. Попытки получить Cu2SO4 из хлорида или иодида одновалентной меди также не принесли успеха.

    Для синтеза Cu2SO4 использовали взаимодействие меди с концентрированной серной кислотой при 200 ºС. Если мы не ставим задачи препаративного получения Cu2SO4, то температуру контролировать не обязательно – достаточно нагреть кислоту до образования белых паров.

    Налили в колбочку 15-20 мл конц. H2SO4, неплотно накрыли ее стеклянной крышкой, и нагрели на песчаной бане до образования белых паров. Затем аккуратно небольшими порциями бросали в нее кусочки медной проволоки. Добавление меди вызывает активное выделение газа и образование тумана. Жидкость в колбе станет темно-зеленой, постепенно выпадет серый осадок. Это и есть сульфат одновалентной меди. Когда выделение газа уменьшилось, охладили колбу и осторожно слили раствор с осадка. В колбу аккуратно добавили 20 мл воды. Раствор стал голубым, серый осадок Cu2SO4 постепенно (через несколько минут) превратился в красноватый осадок меди:

    Cu2SO4 => Cu + CuSO4

    Реакция меди с концентрированной серной кислотой с образованием Cu2SO4

    Разложение осадка сульфата одновалентной меди при действии воды

    (В колбе также видны остатки медной проволоки)

    В результате разложения осадка голубая окраска раствора будет постепенно

    Попробовали получить фосфат одновалентной меди с помощью

    восстановления фосфорнокислого раствора Cu (II) металлической медью. Для этого растворили в фосфорной кислоте основный карбонат меди – до синей окраски раствора, добавили обрезки медной проволоки и нагревали раствор. Легко убедиться, что реакция не идет.

    Вероятно, фосфат одновалентной меди можно получить каким-то другим

    Методом. Ведь Cu2SO4 тоже не образуется при восстановлении CuSO4, зато его можно легко синтезировать с помощью реакции металла с кислотой.

    Но в случае фосфата все гораздо сложнее – ортофосфат меди (I) синтезировать так и не удалось. Медь (I) в присутствии анионов фосфата становится нестабильной: она должна либо окислиться до Cu(II), либо восстановиться до металла. Фосфат и одновалентная медь могут одновременно присутствовать в растворе только тогда, когда Cu(I) образует прочные комплексы с другими лигандами.

    Выводы

    1. Проведено сравнение свойств меди и ее соединений, взятых из учебной и научной литературы разного уровня сложности: для учащихся средней школы и для студентов химических институтов.

    2. Определены свойства меди, представления о которых нам пришлось пересмотреть: возможность взаимодействия меди с разбавленной серной и концентрированной соляной кислотами; растворение меди в водных растворах аммиака; взаимодействие с соляной кислотой в различных условиях. В условиях школьной лаборатории выбраны методики, проведены опыты и получены данные, подтверждающие наши новые знания.

    3. Найдены литературные данные об амфотерных свойствах оксидов меди(I) и меди(II), гидроксида меди(II), а также о возможности растворения этих соединений в водном растворе аммиака. Проведены опыты по получению солей меди (I).Фосфат получить не удалось.

    Литература

    [2]. Глинка химия. М.: «Химия», 1988 – 720с.

    [3]. Некрасов общей химии: в 2-х т. М.: «Химия», 1973 — 656 с., 688 с.

    [4]. Крешков аналитической химии. В 2т. М.: «Химия», 1970 – 424 с.

    [5]. Лурье по аналитической химии. М.: «Химия», 1989 – 448 с.

    [6]. , Беспалов проблемы методики

    обучения химии в школе. М.: Изд-во «Первое сентября», 2007 – 222 с.

    [7]. Беспалов результат или закономерность? //

    «Химия в школе». 2002. № 4. С.68-72.

    [8]. , Фельдман 8 класс, 9 класс. М.: «Просвещение», 2008.

    [9]. Ковалевская 8, 9 классы. Основные понятия в таблицах и схемах. М.: «Издат. – школа», 1997 — 96 с.

    Источник

    Adblock
    detector